I	Dr.K.K.R GOWTHAM EDUCATIONAL 1	INSTITUTIONS :: A.P & T.S
Clas	ss: VIII- A1,A2	Marks: 100
Sub	: Maths, Physics, Chemsitry	Time: 2 ¹ / ₂ Hrs
≈≈≈	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************
I.	Objective type questions :	$50 \times 2 = 100 \mathrm{M}$
	Maths	

 The distance between the two parallel lines is 1 unit. Appoint A is chosen to ice between the lines at a distance d from one of them triangle ABC is equilateral with B on one line and C on the other parallel line. The length of the side of the equilateral triangle is []

a.
$$2/3 \sqrt{d^2 + d + 1}$$
 b. $2\sqrt{\frac{d^2 - d + 1}{3}}$ c. $2\sqrt{d^2 - d + 1}$ d. $\sqrt{d^2 - d + 1}$

2. For a positive integer n, let $f_n(\theta) = (\tan \theta/2) (1 + \sec \theta) (1 + \sec 2\theta) (1 + \sec 2\theta) \dots$ $(1+\sec 2^{n}\theta)$ [] a. $f_2\left(\frac{\pi}{16}\right) = 1$ b. $f_3\left(\frac{\pi}{32}\right) = 1$ c. $f_4\left(\frac{\pi}{64}\right) = 1$ d. $f_5\left(\frac{\pi}{128}\right) = 1$ [] 3. $\tan^{6}\frac{\pi}{9} - 33\tan^{4}\frac{\pi}{9} + 27\tan^{2}\frac{\pi}{9}$ is equal to c. 3 b. $\sqrt{3}$ a. 0 d. 9 4. The value of $\cos \frac{\pi}{7} + \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{5\pi}{7} + \cos \frac{6\pi}{7} + \cos \frac{7\pi}{7}$ is] 1 h -1 c. 0 a. 1 d. none of these 5. If $A = \sin 45^{\circ} + \cos 45^{\circ}$ and $B = \sin 44^{\circ} + \cos 44^{\circ}$ then ſ 1

- a. A>B b. A<B c. A=B d. none of these
- For triangle ABC, R= 5/2 and r=1. Let I be the incentre of the triangle and D,E and F be the feet of the perpendiculars from I to BC, CA and AB respectively. The value of [

7. If a,b and c are the sides of a triangle, then the minimum value of

$$\frac{2a}{b+c-a} + \frac{2b}{c+a-b} + \frac{2c}{a+b-c}$$
 is []

- 8. We are given b,c and sinB such that B is acute and b<c sinB. Then []
 - a. No triangle is possible c. two triangles are possible
 - b. One triangle is possible d. a right angled triangle is possible

9	. The value of $\sum_{k=1}^{13}$	$\frac{1}{\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right)\left(\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right)\right)}$	$\frac{1}{1}\frac{\pi}{4} + \frac{k\pi}{6}$ is equal to)	Γ]
	a. $3 - \sqrt{3}$	b. 2 $(3 - \sqrt{3})$	c. $2(\sqrt{3}-1)$	d. 2 (2+ $\sqrt{3}$	<u>,</u>)	
1	0.If $\cos(x-y) 3 \cos(x-y)$	$(x+y)$ then $\cot x$. $\cot y$			[]
	a. 1	b. 2	c. 3	d. 4		
1	1.Let $x = sin1^0$, the	en the value of the e	expression			
	$\frac{1}{\cos 0^0 \cdot \cos 1^0} + \frac{1}{\cos \theta}$	$\frac{1}{1^0 \cdot \cos 2^0} + \frac{1}{\cos 2^0 \cdot \cos 3^0}$	$\frac{1}{10^{\circ}} + \dots + \frac{1}{\cos 44^{\circ} \cdot \cos 45^{\circ}}$	- is equal to	[]
	a. X	b. 1/x	c. $\frac{\sqrt{2}}{x}$	d. $\frac{x}{\sqrt{2}}$		
1	$2. \frac{2}{\sqrt{2+\sqrt{2+\sqrt{2+2c}}}}$	$\boxed{0 < \theta < \frac{\pi}{8}} = (0 < \theta < \frac{\pi}{8})$			[]
	a. $\cos \theta$	b. secθ	c. –secθ	d. tan θ		
1	3.If $\cos x + \cos y = 4$	$\frac{1}{2}$. Cosx-cosy = $\frac{2}{7}$	7 then 14 tan $\left(\frac{x-x}{2}\right)$	$\left(\frac{y}{2}\right) + 5\cot\left(\frac{x+y}{2}\right)$)= []
	a. 0	b. 1	c. 2	d. 4		
1	4. If $\tan \theta = b/9$ the	$\operatorname{en} \sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} =$			[]
	a. $\frac{2\sin\theta}{\sqrt{2\sin 2\theta}}$	b. $\frac{2\cos\theta}{\sqrt{\cos 2\theta}}$	c. $\frac{2\cos\theta}{\sqrt{\sin 2\theta}}$	d. $\frac{2\sin\theta}{\sqrt{\cos 2\theta}}$	5	
1	5.If x+y+z=xyz then	$\sum \frac{2x}{1-x^2} =$			[]
	a. $\pi\left(\frac{2x}{1+x}\right)$	b. $\pi\left(\frac{2x}{1-x}\right)$	$\frac{1}{2}$ c. $\pi\left(\frac{1+2}{2}\right)$	$\left(\frac{x^2}{2}\right)$ d. π	t (1-x ²)	
1	6. If $\sqrt{1+\sin A} + \sqrt{1-A}$	$\overline{-\sin A} = 2\sin\frac{A}{2}$ then $\frac{A}{2}$	$\frac{1}{2} \in =$		[]
	a. $\left(2n\pi+\frac{\pi}{4}\right)$	$2n\pi + \frac{3\pi}{4}$	c. $\left(2n\pi\right)$	$-\frac{\pi}{2}, 2n\pi + \frac{\pi}{2}$		
	b. $\left(2n\pi-\frac{\pi}{4}\right)$	$(2n\pi + \frac{\pi}{4})$	d. $\left(2n\pi\right)$	$+\frac{\pi}{4},2n\pi+\frac{5\pi}{4}$		
1	$7.\frac{1}{\cos\alpha+\cos3\alpha}+\frac{1}{\cos\alpha+\cos\beta\alpha}$	$\frac{1}{\cos\alpha + \cos 5\alpha} + \dots - \frac{1}{\cos \alpha}$	$\frac{1}{\alpha + \cos(2n+1)\alpha} =$		[]
	a. Coseca (tar	$n(n+1)\alpha$ -tan α)	c. ½ seco	α (tan (n+1)α –tar	n α)	
	b. Seca (tan ($(n+1)\alpha$ –tan α)	d. ½ cose	ecα (tan (n+1)α –	tan α)	
1	8.If tan A +tan B +ta	n C = 6, tanAtanB=2 t	then triangle is		[]

a. Right angled triangle

c. obtuse triangle

b. Equilateral triangle

d. a cute angled triangle

19. If angles A,B,C are in AP then $2\cos\left(\frac{A-C}{2}\right) =$ []

a.
$$\frac{a+c}{\sqrt{a^2 - ac + c^2}}$$
 b. $\frac{a+c}{\sqrt{a^2 + ac + c^2}}$ c. $\frac{a+c}{\sqrt{a^2 - ac - c^2}}$ d. $\frac{a+c}{\sqrt{a^2 + 2ac - c^2}}$

20.In a triangle ABC, if $\cot A = (x^3+x^2+x)\frac{1}{2}$, $\cot B = (x+x^{-1}+1)^{1/2}$ and $\cot C = (x^{-3}+x^{-2}+x^{-1})^{-1/2}$ then the triangle is []

a. Isosceles b. obtuse angled

c. right angled d. none

Physics

21. _____ forces can move a stationary body or they can stop a moving body

(a)balanced(b)centripetal(c)unbalanced(d)centrifugal

22.when we talk of a force acting on a body it usually means

(a)electrical force	(b)balanced force
(c)unbalanced force	(d)nuclear force

23.when a running car stops suddenly, the passengers are jerked_____

- (a)move backward (b)move forward
- (c)rise upwards (d)remain unaffected
- 24.which of the following has largest inertia

(a)a pen

(b)a pin

(c)your loaded school bag (d)your physics book

- 25.The apparent weight of a freely falling body is
- (a)zero (b)increased
- (c)decreased (d)constant
- 26.A car accelerates on a horizontal road due to the force exerted by

(a)the engine of the car (b)the driver of the car (c)the earth

(d)the road

(a)inertial frames (b)non inertial	frames (c)both	(d)none.
------------------------------------	----------------	----------

28.find the magnitude of momentum of a body of mass 10kg moving with a velocity of 5m/s.

(a)40kgm/s (b)30kgm/s (C)50kgm/s (d)60kgm/s

29.A Constant force acts on a body of mass 10kg and produces in it an acceleration of 0.2m/s². calculate the magnitude of

force acting on the body.

(a)1N (b)2N (c)3N (d)4N

30.A 6kg balls strikes a vertical wall with a velocity 34m/s and rebounds with a velocity of 26m/s. The impulse is.

(a)60Ns	(b)180Ns	(c)48Ns	(d)360Ns
			· ·

31.A uniform rope of length L resisting on a smooth horizontal floor is pulled at one end by a force F.find the tension in the rope

at a distance L/4 from the end where the force is applied.

(a)F	(b)F/2	(c)F/4	(d)3F/4

32.A 60kg man is inside a lift which is moving up with an acceleration of 2.45m/s^2 .find the apparent percentage change in his weight.

```
(a)25% increases (b)25% decreases (c)15% increases (d)15% decreases.
```

33. The apparent weight of a mass in a lift moving up is 80kg when its weight in the stationary lift is 60kg. if the same lift now

moves up with same retardation, the weight of the mass will be.

(a)2kg (b)3kg (c)4kg (d)8kg.

34.A man of mass 50kg is standing on a weighing machine kept on a floor of an elevator which is moving down with constant speed 1m/s.find the reading of the weighing machine.

(a)54kg	(b)36kg	(c)40kg	(d)50kg.
			$\langle \rangle$

35.A constant for 27m during that t	rce acts on a body of time, impulse of the s	mass 50gm force is.	at rest for 2	es. if the body moves	throu	lgh
(a)1.35kgm/s	(b)13.5Ns		(c)135Ns	(d)2.7kgm	/s	
	Chen	nistry				
36. Amongst	$H_2O, H_2S, H_2Se, \& H_2$	H_2 Te the on	e with the h	ighest boiling point	is []
b. H ₂ 0	b. H ₂ Te	с. Н	$_{2}S$	d. H ₂ Se		
37.Arrange th dichlorobe	e following compou enzene (II), O- dichlo	nds in order probenzene (of increasir (III) , p- dich	ng dipolement, toluen nlobenzene (IV)	nce (I [) m-]
a. I < I	V < II < III	c. IV	/ < I < III <	II		
b. IV <	< I < II < III	d. IV	V < II < I <	III		
38.The number	er and type of bonds	between tw	o carbon ato	oms in CaC ₂ are	[]
a. One	sigma (σ) and one l	Pi (π) bond	S			
b. One	sigma (σ) and two	Pi (π) bond	S			
c. One	sigma (σ) and one l	nalf Pi (π) ł	oonds			
d. One	sigma (σ) bond onl	у.				
39.The mole	which has zero dipol	e moment is	5		[]
a. CH ₂	$_2 \operatorname{Cl}_2$	b. BF ₃	c. NF ₃	d. ClO ₂		
40.Element x are univale	is strongly electropo ent the compound for	sitive and e rmed would	lement Y is be	strongly electronega	tive. I [30th]
a. X ⁺ Y	Y-	b. X^-Y^+	c. X-Y	d. $X \rightarrow Y$		
41.Which of t	the following compo	und is coval	ent		[]
a. H ₂	b. Ca	0	c. KCl	d. Na_2S		
42.The total n	number of electrons t	hat take par	t in forming	the bonds in N_2 is	[]
a. 2	b. 4		c. 6	d. 10		
43.The compo	ound which contains	both Ionic a	and covalent	t bonds is	[]
a. CH4	b. H ₂		c. KCN	d. KCl		
44.The correc	et statement for the m	olecule CsI	3 18		[]
a. It is	a covalent molecule	c. it	contains Cs	$^{+3}$ and I ⁻ ions		
b. It co	ontains Cs^+ and I_3^- ion	ns d. it	contains Cs	⁺ , I^- and I_2 molecule		
45.The specie	es having pyramidal s	shape is			[]

a.	SO ₃	b. BrF ₃	c. SiO ⁻² ₃	d. OSI	F_2		
46.Whic	h of the following a	re isoelectronic an	d isostructura	ıl NO₃⁻,	CO ₃ -2 , ClO	3 ⁻ , SO	3
a.	NO ⁻ ₃ , CO ₃ ⁻²	b. So ₃ , NO ₃ ⁻	c. ClO ₃ -, CO	O_3^{-2}	d. CO_3^{-2} , SC) ₃	
47.Specify the coordination geometry around and hybridization of N and B atom					ns in 1 ſ	.:1 1	
eomp	N: tetrahedral SP	$3 \cdot \mathbf{B} \cdot \mathbf{tatrahad}$	ral SD ³			L	L
а.	N. lettaileurar, Sr	, D. ICHAIICU	iai, Sr				
b.	N: pyramidal, SP ³	; B: pyramid	al , \mathbf{SP}^3				
с.	N: pyramidal, SP ³	; B: planar,	SP^2				
d.	N: pyramidal, SP ³ ;	B: tetrahed	ral, SP ³				
48.Whic	h of the following n	nolecule is planar?				[]
a.	NF ₃	b. NCl ₃	c. PH ₃		d. BCl ₃		
49. The maximum number of possible hydrogen bonds that water molecule can form							
a.	2	b. 4	c. 3		d. 1		
50.Amor	50. Among the following linear molecule is					[]
a.	CO_2	b. NO ₂	c. SO ₂		d. ClO ₂		