Dr.K.K.R GOWTHAM EDUCATIONAL INSTITUTIONS :: A.P \& T.S

Class: VIII- CO,F1

Marks: 100
Sub: Maths, physics, Chemistry
Time: $2^{1 / 2} \mathbf{H r s}$
I. Objective type questions :

Maths

1. Distance of the point $(\cot \alpha, 1)$ from origin is \qquad
a. $|\sec \alpha|$
b. $|\cot \alpha|$
c. $|\operatorname{cosec} \alpha|$
d. $|\tan \alpha|$
2. The centre of a circle is $(0,0)$. If $(3,2)$ is one end of a diameter then the other end is
a. $(-3,-2)$
b. $(3,-2)$
c. $(-3,2)$
d. none
3. If the points $(a, 0)(0, b)$ and $(1,1)$ are collinear, then $\frac{1}{a}+\frac{1}{b}=$ \qquad $-$
a. -1
b. 1
c. -2
d. 0
4. $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ are the points $(-2,-1)(0,3)(4,0)$ respectively then the coordinates of P such that PQRS is a parallelogram is \qquad
a. $(2,-6)$
b. $(-6,2)$
c. $(2,-4)$
d. $(-3,2)$
5. Circum centre of the $\Delta^{\text {le }}$ formed by the points $(3,2)(3,-2)(5,2)$ is \qquad
a. $(3,2)$
b. $(4,0)$
c. $(3,-2)$
d. $(5,2)$
6. The harmonic conjugate of $(4,1)$ with respect to the points $(3,2)$ and $(-1,6)$ is \qquad []
a. $(-4,-1)$
b. $(1,4)$
c. $\left(\frac{7}{6}, \frac{8}{6}\right)$
d. $\left(\frac{7}{3}, \frac{8}{3}\right)$
7. Slope of the line $4 x+3 y=9$ is \qquad
a. $4 / 3$
b. $-4 / 3$
c. $3 / 4$
d. $9 / 4$
8. The line $4 x+3 y=7$ intersects X axis at the point
a. $\left(\frac{7}{4}, 0\right)$
b. $\left(-\frac{7}{4}, 0\right)$
c. $(7,4)$
d. none
9. The distance between the parallel lines $3 x+4 y+2=0,6 x+8 y+9=0$ is \qquad
a. 1
b. 2
c. $1 / 2$
d. 3
10. Normal form of the line $x+y+\sqrt{2}=0$ is \qquad
a. $\mathrm{x} \cos \frac{\pi}{4}+\mathrm{y} \sin \frac{\pi}{4}=1$
b. $\mathrm{x} \cos \frac{3 \pi}{4}+\mathrm{y} \sin \frac{3 \pi}{4}=1$
c. $\mathrm{x} \cos \frac{5 \pi}{4}+\mathrm{y} \sin \frac{5 \pi}{4}=1$
d. $\mathrm{x} \cos \frac{7 \pi}{4}+\mathrm{y} \sin \frac{7 \pi}{4}=1$
11.Tan $55^{\circ}-\tan 10^{\circ}-\tan 55^{\circ} . \operatorname{Tan} 10^{\circ}=$ \qquad
a. -1
b. 1
c. $-\sqrt{3}$
d. $1 / 2$
11. $\operatorname{Cos} \theta+\cos \left(240^{\circ}+\theta\right)+\cos \left(240^{\circ}-\theta\right)=$
a. 1
b. -2
c. 3
d. 0
13.In $\triangle \mathrm{ABC} \sum \frac{\sin (A-B)}{\cos A \cos B}=$ \qquad
a. 0
b. 1
c. 2
d. $1 / 2$
14.If $\tan \theta_{1}=\mathrm{k} \cot \theta_{2}$ then $\frac{\cos \left(\theta_{1}-\theta_{2}\right)}{\cos \left(\theta_{1}+\theta_{2}\right)}=$ \qquad
a. $\frac{1+k}{1-k}$
b. $\frac{1-k}{1+k}$
c. $\frac{k+1}{k-1}$
d. $\frac{k-1}{k+1}$
15.If $2 \tan \mathrm{~A}+\cot \mathrm{A}=\tan \mathrm{B}$ then $\cot \mathrm{A}+2 \tan (\mathrm{~A}-\mathrm{B})=$ \qquad
a. 1
b. 2
c. 0
d. -1
12. $\operatorname{Tan}\left(\theta+135^{\circ}\right) \operatorname{Tan}\left(\theta-135^{\circ}\right)=$ \qquad
a. 0
b. -1
c. 5
d. 2
13. $\frac{1-\cos 2 \theta}{\sin 2 \theta}=$ \qquad
a. $\operatorname{Cot} \theta$
b. $\tan \theta$
c. $\tan \theta \cos \theta$
d. $-\sec \theta$
18.Tan $10^{\circ} \tan 50^{\circ} \tan 70^{\circ}=$ \qquad
a. $\sqrt{3}$
b. $\frac{1}{\sqrt{3}}$
c. $\frac{\sqrt{3}}{2}$
d. $-\sqrt{3}$
14. $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=$ \qquad
a. 4
b. -4
c. 2
d. -2
15. $\operatorname{Tan}^{6} \frac{\pi}{9}-33 \tan ^{4} \frac{\pi}{9}+27 \tan ^{2} \frac{\pi}{9}$ is equal to
a. -3
b. $\sqrt{3}$
c. 3
d. none

Physics

21. Find the area bounded under the curve $y=3 x^{2}+6 x+7$ and the x - axis with the coordinates at $\mathrm{x}=5$ and $\mathrm{x}=10$
a. 1125
b. 1135
c. 1235
d. 125
22. The displacement of a body caries with time as $S=t^{3}+3 t^{2}+2 t-1$. If the velocity at $t=4$ sec is
a. $74 \mathrm{~m} / \mathrm{s}$
b. $60 \mathrm{~m} / \mathrm{s}$
c. $72 \mathrm{~m} / \mathrm{s}$
d. $54 \mathrm{~m} / \mathrm{s}$
23. The velocity of particle is $v=V_{0}+g t+s t^{2}$. If its position is $x=0$ at $t=0$ then find its displacement after unit time.
a. $\mathrm{V}_{0} \mathrm{t}+\frac{g t^{2}}{2}+\frac{f t^{2}}{2}$
b. $\mathrm{V}_{0}+\mathrm{g}+\frac{f}{3}$
c. $\mathrm{V}_{0}+\frac{g}{2}+\frac{f}{3}$
d. $\mathrm{V}_{0} \mathrm{t}+\frac{g \mathrm{t}^{2}}{2}+\mathrm{ft}^{3}$
24.The graph shows the variation of velocity of rocket with time . the maximum height attained by the rocket is
a. 1.1 km
c. 5 km
b. 55 km
d. none of these

25.Acceleration time graph of a particle moving in a straight line is shown in figure. Velocity of particle at $t=0$ is $2 \mathrm{~m} / \mathrm{s}$ velocity at the end of $4^{\text {th }}$ second is
a. $8 \mathrm{~m} / \mathrm{s}$
b. $12 \mathrm{~m} / \mathrm{s}$
c. $10 \mathrm{~m} / \mathrm{s}$
d. $14 \mathrm{~m} / \mathrm{s}$

26.The relation between time to and distance x is $\mathrm{x}=\mathrm{ax}^{2}+\mathrm{bx}$ where a and b are constantly find the acceleration
a. $-2 a v^{3}$
b. $-2 a v^{2}$
c. $2 \mathrm{av}^{3}$
d. -2 av
27.Sand fally on to convey or belt at a constant rate $2 \mathrm{~kg} / \mathrm{sec}$. if the belt is moving at 0.1 $\mathrm{m} / \mathrm{sec}$. then the extra force required to maintain speed of belt is
a. 2 N
b. 0.2 N
c. 20 N
d. zero
28.The displacement x of a particle at any instant is related to its velocity as $\mathrm{v}=\sqrt{2 x+9}$. Its acceleration in $\mathrm{m} / \mathrm{s}^{2}$ is
a. 2
b. 1
c. 4
d. 0.1
29.A body is thrown with velocity $(4 i+3 j) \mathrm{m} / \mathrm{s}$ its maximum height is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)[\quad]$
a. 2.5 m
b. 0.8 m
c. 0.9 m
d. 0.45 m
30.For a projectile the ratio of maximum height reached to square of flight time is[]
a. 5:4
b. 5:2
c. 5:1
d. 10:1
31.A body projected with velocity $30 \mathrm{~m} / \mathrm{s}$ reaches its maximum height in 15 sec . its range is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. 45 m
b. 108 m
c. $45 \sqrt{3} \mathrm{~m}$
d. 54 m
32.A hose pipe lying on the ground shoots a stream of water upwards at an angle 60° to the horizontal at a speed of $20 \mathrm{~m} / \mathrm{s}$. the water strikes a wall 20 m away at a height of ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
a. 14.64 m
b. 7.32 m
c. 29.28 m
d. none of the above
33.A person throws a bottle into a dustbin at the same height as he is 2 m away at an angle of 45^{0}. The velocity of thrown is
a. g
b. \sqrt{g}
c. 2 g
d. $\sqrt{2} \mathrm{~g}$
34.a body is projected horizontally from the top of tower with a velocity of $30 \mathrm{~m} / \mathrm{s}$. the velocity of the body 4 sec after projection is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
a. $40 \mathrm{~m} / \mathrm{s}$
b. $20 \mathrm{~m} / \mathrm{s}$
c. $50 \mathrm{~m} / \mathrm{s}$
d. $100 \mathrm{~m} / \mathrm{s}$
35.The height and width of each step of a staircase are 20 cm and A ball rolly off the top of a stair with horizontal velocity v and hits the fifth step. The magnitude of V is $\left[\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
a. $1.5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
b. $3 \sqrt{5} \mathrm{~m} / \mathrm{s}$
c. $7.5 \mathrm{~m} / \mathrm{s}$
d. $1.5 \mathrm{~m} / \mathrm{s}$

Chemistry

36.Torr is a unit of
a. Mass
b. volume
c. pressure
d. density
37.20 litres of hydrogen gas at NTP weight about
a. 12.2 g
b. 44.8 g
c. 1.8 g
d. 20 g
38. At constant temperature for a given mass of gas, pressure of the gas if volume'v' becomes three times
a. P
b. $\mathrm{p} / 4$
c. $\mathrm{p} / 3$
d. $3 p$
39. An open vessel at $27^{\circ} \mathrm{C}$ is heated until three fourth mass of the air in it has been expelled neglecting the expansion of the vessel, the temperature to which the vessel has to be heated is
a. $927^{\circ} \mathrm{C}$
b. $108^{0} \mathrm{C}$
c. $1000^{\circ} \mathrm{C}$
d. $477^{\circ} \mathrm{C}$
40.What percentage of volume of air will be expelled from a vessel containing 600 ml at 27^{0} when it is heated to $37^{\circ} \mathrm{C}$ at the same pressure
a. 3.33%
b. 27%
c. 67%
d. 66%
41.Gas deviate from ideal behaviour at
a. Low T and high ' P '
c. high T and high P
b. Low T and low P
d. high T and low P
42.The density of a gas at STP is $2 \mathrm{~g} / \mathrm{l}$. its molecular weight is
a. 22.4
b. 56
c. 44.8
d. 30
43.The mass of 2.46 lit of CH_{4} at 1.5 atm and $27^{\circ} \mathrm{C}$ is
a. 1.6 g
b. 2.4 g
c. 22.4 g
d. 3.0 g
44.The vapour density of a gas is 11.2 . the volume occupied by 10 g of the gas at STP is
a.10L
b. 1L
c. 11.2 L
d. 5.6 L
45. the number of oxygen molecule present in 1 lit flask at a pressure of 101.325×10^{-12} KPa and temperature 101.325 k is
a. 7.243×10^{10}
b. 7.243×10^{11}
c. 7.243×10^{12}
d. 7.243×10^{13}
46. mixing of two gases by diffusion is
a. reversible
b. irreversible
c. exothermic
d. endothermic
47. the rate of diffusion of gas A is double the rate of gas B . the ratio of their molecular weight is
a. 1:2
b. 1:4
c. $2: 1$
d. $4: 1$
48. Dalton's law of partial pressures is applicable to
a. $\mathrm{NO}+\mathrm{O}_{2}$
b. $\mathrm{H}_{2}+\mathrm{Cl}_{2}$
c. $\mathrm{NH}_{3}+\mathrm{HCl}$
d. $\mathrm{CO}_{2}+\mathrm{O}_{2}$
49. kinetic energy of 1 mole of oxygen gas in calories
a. 2 T
b. 3 T
c. 1.5 T
d. 0.5 T
50. the root mean square velocity of an ideal gas at constant pressure varies with density (d) as
$\begin{array}{ll}\text { c. } \sqrt{d} & \text { d. } 1 / \sqrt{d}\end{array}$

