Dr.K.K.R GOWTHAM EDUCATIONAL INSTITUTIONS : Class: VIII- CO,F1 Sub: Maths, physics, Chemistry						:: A.P & 7 Marks: 1 Time: 2 ¹ / ₂]	: A.P & T.S Marks: 100 Time: 2 ¹ / ₂ Hrs	
≈≈ I.	≈≈≈	©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©	auestions :	*****	*~~~~~~~~~	≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ 50 × 2= 100 M		
			Maths					
	1.	Distance of the	ne point (cota,1) fro	om origin is	-	[]	
		a. $ \sec \alpha $	b. $ \cot \alpha $	c. $\left \cos ec\alpha\right $	d. $ \tan \alpha $			
	2.	The centre of	a circle is (0,0). If	(3,2) is one end of	a diameter then th	e other end	is	
			1 (2 2)			l]	
		a. (-3,-2)	b. (3,-2)	c. (-3,2)	d. none			
	3.	If the points	s (a,0) (0,b) and (1,1) are collinear	t, then $\frac{1}{a} + \frac{1}{b} = $. []	
		a. - 1	b. 1	c2	d. 0			
	4.	Q,R,S are the PQRS is a pa	e points (-2,-1) (0,3) rallelogram is	(4,0) respectively	then the coordinat	tes of P such	n that]	
		a. (2,-6)	b. (-6,2)	c. (2,-4)	d. (-3,2)			
	5.	Circum centre	e of the Δ^{le} formed	by the points (3,2)	(3,-2) (5,2) is	[]	
		a. (3,2)	b. (4,0)	c. (3,-2)	d. (5,2)			
	6. The harmonic conjugate of $(4,1)$ with respect to the points $(3,2)$ and $(3,2)$					-1,6) is _[]	
		a. (-4,-1)	b. (1,4)	$\mathbf{c}.\left(\frac{7}{6},\frac{8}{6}\right)$	$d.\left(\frac{7}{3},\frac{8}{3}\right)$			
	7.	Slope of the lin	e 4x+3y=9 is	_		[]	
		a. 4/3	b4/3	c. ³ / ₄	d. 9/4			
	8.	The line $4x+3$	3y=7 intersects X as	xis at the point		[]	
		a. $(\frac{7}{4}, 0)$	b. $(-\frac{7}{4}, 0)$	c. (7,4)	d. none			
	9.	The distance	between the paralle	el lines 3x+4y+2=0	, 6x+8y+9=0 is	[]	
		a. 1	b. 2	c. ½	d. 3			
	10	.Normal form	[]				
		a. $x\cos\frac{\pi}{4} + ys$	$in\frac{\pi}{4}=1$	c. $x\cos\frac{5\pi}{4} + ys$	in $\frac{5\pi}{4} = 1$			
		b. $x\cos\frac{3\pi}{4} + y$	$v\sin\frac{3\pi}{4} = 1$	d. $x\cos\frac{7\pi}{4} + ys$	$\sin\frac{7\pi}{4}=1$			
	11	. Tan 55° – tan	10^{0} – tan 55 ⁰ . Tan	$10^0 = $		[]	
		a1	b. 1	c. $-\sqrt{3}$	d. ½			
	12	$Cos \theta + cos(2 \theta)$	$40^{0}+\theta)+\cos(240^{0}-\theta)$)=		[]	
		a. 1	b2	c. 3	d. 0			

13	S.In $\triangle ABC \sum \frac{\sin(A)}{\cos A}$	$\frac{(A-B)}{\cos B} =$	_		[]	
	a. 0	b. 1	c. 2	d. ½			
14	$. If \tan \theta_1 = k \cot \theta_2 t$	hen $\frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)}$	$\frac{2}{2} = $		[]	
	a. $\frac{1+k}{1-k}$	b. $\frac{1-k}{1+k}$	c. $\frac{k+1}{k-1}$	d. $\frac{k-1}{k+1}$			
15	5.If $2tanA + cotA =$	tanB then co	t A +2tan (A-B) =	_	[]	
	a. 1	b. 2	c. 0	d1			
16	5. Tan (θ +135 ⁰) Tan	$(\theta - 135^{\circ}) = $			[]	
	a. 0	b1	c. 5	d. 2			
17	$\frac{1 - \cos 2\theta}{\sin 2\theta} = \underline{\qquad}$				[]	
	a. Cotθ	b. tanθ	c. $tan\theta cos\theta$	d. –secθ			
18	$3.$ Tan 10^{0} tan 50^{0} ta	$n 70^0 = $			[]	
	a. $\sqrt{3}$	b. $\frac{1}{\sqrt{3}}$	c. $\frac{\sqrt{3}}{2}$	d $\sqrt{3}$			
19	$0.\frac{1}{\sin 10^0} - \frac{\sqrt{3}}{\cos 10^0} = -$				[]	
	a. 4	b4	c. 2	d2			
20	20. $\operatorname{Tan}^{6} \frac{\pi}{9} - 33 \tan^{4} \frac{\pi}{9} + 27 \tan^{2} \frac{\pi}{9}$ is equal to [
	a3	b. √3	c. 3	d. none			
			Physics				
21	.Find the area boun coordinates at x=	nded under th 5 and x=10	the curve $y=3x^2+6x+7$ and	the x- axis with the	[]	
	a. 1125	b. 1135	c. 1235	d. 125			
22. The displacement of a body caries with time as $S = t^3 + 3t^2 + 2t - 1$. If the velocity at $t = 4$							
	sec is				[]	
	a. 74 m/s	b. 60 m/s	c. 72 m/s	d. 54 m/s			
23	The velocity of pa displacement after	article is v= V r unit time.	V_0 +gt +st ² . If its position is	s x=0 at t= 0 then find f	nd its []	
	a. $V_0 t + \frac{gt^2}{2} + \frac{ft^2}{2}$	b. $V_0 + g + \frac{f}{3}$	c. $V_0 + \frac{g}{2} + \frac{f}{3}$	d. $V_0t + \frac{gt^2}{2} + ft^3$			
24	The graph shows attained by the roo	the variation cket is	of velocity of rocket with	time . the maximum	n heigł [nt]	
	a. 1.1 km	c. 5 km	1000 - 1 5	jogram.			
	b. 55km	d. none of t	hese //				

0 10 110 1 465)

25. Acceleration time graph of a particle moving in a straight line is shown in figure. Velocity of particle at $t= 0$ is 2m/s velocity at the end of 4 th second is []								
	a. 8	8m/s	c. 10m/s	=/ Ta(mls)				
	b.	12 m/s	d. 14 m/s	4 				
26.	The find	relation between the acceleration	en time to and distant	ance x is $x = ax^2 + bx$	where a and b are	constan [ntly]	
	a	$2av^3$	b. $-2av^2$	c. $2av^3$	d2av			
27.	27.Sand fally on to convey or belt at a constant rate 2kg/ sec. if the belt is moving at 0.1 m/sec. then the extra force required to maintain speed of belt is []							
	a. 2	2N	b. 0.2N	c. 20N	d. zero			
28.	28. The displacement x of a particle at any instant is related to its velocity as $v = \sqrt{2x+9}$. Its acceleration in m/s ² is []							
	a. 2	2	b. 1	c. 4	d. 0.1			
29.	A b	ody is thrown	with velocity (4i+3j) m/s its maximum	height is (g= 10 m/	$(s^{2})[$]	
	a. 2	2.5m	b. 0.8m	c. 0.9m	d. 0.45m			
30.	For	a projectile the	e ratio of maximum	height reached to s	quare of flight time	e is[]	
	a. 5	5:4	b. 5:2	c. 5:1	d. 10:1			
31.A body projected with velocity 30 m/s reaches its maximum height in 15 sec. is $(g=10m/s^2)$							inge]	
	a. 4	45m	b. 108m	c. 45 $\sqrt{3}$ m	d. 54m			
32.	32.A hose pipe lying on the ground shoots a stream of water upwards at an angle 60^{0} to the horizontal at a speed of 20 m/s. the water strikes a wall 20m away at a height of $(g=10 \text{ m/s}^{2})$ []							
	a .]	l4.64m	b. 7.32m	c. 29.28m	d. none of the abo	ve		
33.	33.A person throws a bottle into a dustbin at the same height as he is 2m away at an angle of 45 [°] . The velocity of thrown is []							
	a. g	3	b. \sqrt{g}	c. 2g	d. $\sqrt{2}$ g			
34.	a bo velo	ody is projected ocity of the body	l horizontally from ly 4 sec after projec	the top of tower with tion is $(g=10m/s^2)$	th a velocity of 30n	n/s. the [;]	
	a. 4	40 m/s	b. 20 m/s	c. 50 m/s	d. 100m/s			
35.	35. The height and width of each step of a staircase are 20cm and A ball rolly off the top of a stair with horizontal velocity v and hits the fifth step. The magnitude of V is $[g=10m/s^2]$ []							
	a . 1	$1.5 \sqrt{5} \text{ m/s}$	b. 3 $\sqrt{5}$ m/s	c. 7.5 m/s	d. 1.5 m/s			

Chemistry

36	Torr is a unit of			[]	
	a. Mass	b. volume	c. pressure	d. density		
37	2.20 litres of hydrogen gas	s at NTP weight ab	out		[]
	a. 12.2g	b. 44.8g	c. 1.8g	d. 20g		
38	3.At constant temperature	for a given mass of	f gas, pressure of th	e gas if volur	ne'v'	
	becomes three times				[]
	a. P	b. p/4	c. p/3	d. 3p		
39	An open vessel at 27°C is expelled neglecting the end of the second seco	is heated until three expansion of the ve	e fourth mass of the ssel, the temperatur	air in it has b to which th	een e vess [el]
	a. 927 [°] C	b. 108 ⁰ C	c. 1000° C	d. 477 ⁰ C		
40	What percentage of volu 27° when it is heated to 3	time of air will be example 37^{0} C at the same pr	xpelled from a vesse ressure	el containing	600 m [nl at]
	a. 3.33%	b. 27%	c. 67%	d. 66%		
41	.Gas deviate from ideal b	ehaviour at			[]
	a. Low T and high 'P'	c. hig	gh T and high P			
	b. Low T and low P	d. hi	gh T and low P			
42	The density of a gas at S	TP is 2g/l. its mole	ecular weight is		[]
	a. 22.4	b. 56	c. 44.8	d. 30		
43	The mass of 2.46 lit of C	CH_4 at 1.5 atm and 2	27 [°] C is		[]
	a. 1.6g	b. 2.4g	c. 22.4g	d. 3.0g		
44	The vapour density of a	gas is 11.2. the vol	ume occupied by 10	g of the gas	at STF [o is
	a.10L	b. 1L	c. 11.2L	d. 5.6L		
45.	the number of oxygen m KPa and temperature 10	olecule present in 1.325k is	1 lit flask at a press	ure of 101.32	5 X10 [-12
	a. 7.243 X 10 ¹⁰	b. 7.243 X 10 ¹¹	c. 7.243 X 10 ¹²	d. 7.243 X	10 ¹³	
46.	mixing of two gases by a. reversible	diffusion is b. irreversible	c. exothermic	d. endother	[mic]a
47.	the rate of diffusion of g weight is	as A is double the	rate of gas B. the ra	tio of their m	olecul [ar]
	a. 1:2	b. 1:4	c. 2:1	d. 4:1		
48.	Dalton's law of partial p a. NO+O ₂	pressures is applica b. H ₂ +Cl ₂	ble to c. NH ₃ +HCl	d. CO ₂ +O ₂	[]

49.	kinetic energy of 1 mole of oxygen gas in calories					1
	a. 2T	b. 3T	c. 1.5T	d. 0.5T		
50.	the root mean square v (d) as	elocity of an ideal ga	s at constant pressu	re varies with	densit [y]

a. d^2 b.d c. \sqrt{d} d. $1/\sqrt{d}$