
**	3 -A1, A2 t: MATHS, PHYSICS, CHEMISTRY	*****	******	******	Marks Time: 1	
e (of the Student: Choose the correct ar		G.C.S		50x2	=100
	If two vertices of a triangl line x+y=7, then the third		1) orthocenter lies at	the origin and centro	oid on tl [he]
	a) (7,4)	b. (8,14)	c. (12,21)	d. none of the	ese	
	The centroid of an equilat	eral triangle is (0,0).	. If two vertices of the	e triangle lie		
	on x+y = $2\sqrt{2}$ then one o	f then will have its c	co ordinates.		[]
	a. $(\sqrt{2} + \sqrt{6}, \sqrt{2} - \sqrt{6})$	b. $\left(\sqrt{2}+\sqrt{3},\sqrt{2}\right)$	$\left(\sqrt{2}-\sqrt{3}\right)$ c. $\left(\sqrt{2}+\sqrt{5}\right)$,	$\sqrt{2} - \sqrt{5}$ d. none		
	A line 'L' is drawn from I at points A and B respect Similarly from point 'B' parallelogram AA ₁ BB ₁ is BB ₁ is least is	tively. From A, a lin , a line perpendic	ne perpendicular to I ular to L is drawn	L is drawn meeting the meeting the line L_1	and B ₁	L ₂ at . . Thu
	a. x-7y+17=0	b. 7x+y+31=0	c. x-7y-17=0	d. x+7y-31=0)	
	A line cuts the x axis at A AB cutting the x axis at P a. $x+y^2-7x+5y=0$ b. $x+y^2+7x+5y=0$	and the y axis at Q	9. If AQ and BP interv $7x+5y=0$	· *	-	
	The equation of the bisect a. x+y+5=0 b. x	-	e between the lines 22 2. x-y=5	x-y+4=0 and x-2y =1 d. none of these	is []
	L_1 and L_2 are two lines. If between the lines is	the reflection of 4 in	n L_2 and the reflectio	n of L_2 in 4 coincide,	then the	e angl]
				n of L_2 in 4 coincide, d. 90 ⁰	then the	e angl]
	between the lines is	50 ⁰ c	2. 45 ⁰		then th	e angl]]
	between the lines is a. 30^0 b. 6	50^0 c $\frac{z}{\cos\left(\theta + \frac{2\pi}{3}\right)}$, then	2. 45 ⁰		then th	e angl
	between the lines is a. 30^{0} b. 6 If $\frac{x}{\cos \theta} = \frac{y}{\cos\left(\theta - \frac{2\pi}{3}\right)} =$	50^0 c $\frac{z}{\cos\left(\theta + \frac{2\pi}{3}\right)}$, then $\cos\left(\theta + \frac{2\pi}{3}\right)$ c	z. 45 ⁰ x+y+z is equal to	d. 90 ⁰	then th	e angl]]
	between the lines is a. 30^{0} b. 6 If $\frac{x}{\cos \theta} = \frac{y}{\cos \left(\theta - \frac{2\pi}{3}\right)} =$ a. 1 b. 0	50^0 c $\frac{z}{\cos\left(\theta + \frac{2\pi}{3}\right)}$, then one of the	 2. 45⁰ x+y+z is equal to x-1 	d. 90 ⁰ d. none of these	then the	e angl

10. 11.	 a. (2, -¹/₂) If A (1,2) B (-4,2). Solution sq. units is a. 0 In ΔABC, B (1,2) , a. 2:1 The number of lines 	Δ^{le} whose vertices are (2 b. ($\frac{1}{2}$, - $\frac{1}{2}$) Number of points P in t b. 2 C(5,6) and the internal b. 3:1	c. $(2, -\frac{\sqrt{3}-1}{2})$ he plane such that $\angle 2$ c. 3	d. $(\frac{1}{2}, -\frac{\sqrt{3}-1}{2})$ APB = $\frac{\pi}{2}$ and area of d. 4	[]	
10. 11.	If A (1,2) B (-4,2). Solutions sq. units is a. 0 In ΔABC, B (1,2) , a. 2:1 The number of lines	Number of points P in t b. 2 C(5,6) and the internal b. 3:1	the plane such that $\angle c$. 3 bisector of the angle A	APB = $\frac{\pi}{2}$ and area of d. 4	[]	
11.	sq. units is a. 0 In ΔABC, B (1,2), a. 2:1 The number of lines	b. 2 C(5,6) and the internal b. 3:1	c. 3 bisector of the angle A	2 d. 4	[]	
11.	 a. 0 In ΔABC, B (1,2) , a. 2:1 The number of lines 	C(5,6) and the internal b. 3:1	bisector of the angle A		[en $\frac{AB}{AC}$: [] =	
11.	In ΔABC, B (1,2), a. 2:1 The number of lines	C(5,6) and the internal b. 3:1	bisector of the angle A		$rm \frac{AB}{AC}$	=	
	a. 2:1 The number of lines	b. 3:1		cuts BC at D(4,5) the	$\frac{AB}{AC}$	=	
	The number of lines		c. 1:3]	
12.		s that can be drawn three		d3:1		_	
		s mai can ut utawn thru	bugh the point (4, $\sqrt{13}$) at a distance of 3 uni	ts from	the point	
	(-2,0) is			, 	[]	
	a. 0	b. 1	c. 2	d. infinite			
13.	The equation of the lines $4x+3y=3$ and $4x+3y=3$	st. lines through the po 4x+3y=12 is	int (2,3) and making a	n intercept of length 3	betwee [n the]	
	a. 7x+24y+86=0		c. 7x-24y-86=0				
	b. 7x+24y-86=0		d. 7x-24y+86=0				
	A straight line through the origin O meets the parallel lines $4x+2y=9$ and $2x+y+6=0$ at points P and 0 respectively. Then the point O divides the segment PQ in the ratio.						
	a. 1:2	b. 3:4	c. 2:1	d. 4:3			
15.	A variable straight line drawn through point of intersection of the straight lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$						
	meets the axes in A and B. the locus of midpoint of AB is				[]	
	a. xy (a+b) xy		b.(a+b)xy = ab (x+y))			
	b. $ab(x+y) = 2(a+y)$	b)xy	d. $abxy = (a+b)(x+y)$	y)			
16.	Given $P=(a,0)$ and $Q=(-a,0)$ and R is a variable point on one side of the line PQ such that $\angle RPQ - \angle RQP = 2\alpha$. the locus of the point R is []						
	a. $x^2+y^2+2xycot2c$	$\alpha = a^2$	c. $x^2+y^2-2xy\tan 2\alpha =$	a^2			
	b. $x^2-y^2+2xytan2c$	$\alpha = a^2$	d. $x^2-y^2+2xyxot2x=a$	a^2			
		A (7,0), y axis at B (0, If AQ, BP intersect in T	·) is drawn perpendicul	ar to A	B cutting]	
	a. $x^2+y^2+7x-5y=0$		c. $x^2+y^2-3x+4y=0$				
	b. $x^2+y^2-7x+5y=0$		d. $x^2+y^2+6x+7y=0$				
18.	If $x = sin1$, $y = sin2$,	Z= sin3 then			[]	
	a. $x < y < z$	b. $x > y > z$	c. $y < z < x$	d. $z < x < y$			

19. If
$$\pi < \theta < \frac{3\pi}{2}$$
 then $\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} + \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = [1]$
a. -2 cosec θ b. 2 cosec θ c. -2 cot θ d. 2 cot θ
20. If $x = a \sec^n \theta$; $y = b \tan^n \theta$ then $\left(\frac{x}{a}\right)^{2^n} - \left(\frac{y}{b}\right)^{2^n} = [1]$
a. 0 b. -1 c. 1 d. 2
Physics
21. A hunter aims his gun and fires a bullet directly at a monkey on a tree. At the instant the bullet leaves the gun, the monkey drops. The bullet
a. cannot hit the monkey if its weight is more than 30 kg. wt
c. may hit the monkey if its weight is least than 30 kg. wt
c. may hit the monkey if its weight is least than 30 kg. wt
d. hits the monkey if respective of its weight.
22. The number of bullets are fired horizontally with different velocities from the top of a tower they reach
the ground [1]]
a. a tasme time with same velocity b. at different times with different velocities
c. at same time with other velocities d. at different times with same velocity
23. A and B are two trains moving parallel to each other. If a ball is thrown vertically up from the train A, the
path of the ball is
a. parabola for an observer in B when B is moving with the same speed in the same direction
of A
c. a parabola for an observer in B when B is moving with the same speed in the same direction
of A
c. a parabola for an observer in B when B is moving with the same speed in the same direction
of A
c. b. 30° c. 45° d. none of the above
25. A ball is projected obliquely with a velocity $49ms^{-1}$ strikes the ground at a distance of 245m from the
point of projecton. It remained in ait for
a. $10 \sec$ b. $5\sqrt{2} \sec$ c. $3\sec$ d. $2.5\sec$
26. A particle is projected with velocity $2\sqrt{gh}$ and at an angle 60° to the horizontal so that it just clears two
walls of equal height h which are a distance 2 h from each other. The time interval for which the particle
travels between this two walls is [1]
a. $2\sqrt{\frac{h}{R}}$ b. $\sqrt{\frac{h}{R}}$ c. $\sqrt{\frac{2h}{R}}$ d. $\sqrt{\frac{2h}{2g}}$

		Cher	<u>nistry</u>			
36.	A quantity of heat is confined in a chamber of constant volume, when the chamber is important of melting ice, the pressure of the gas is 1000 torr. Final temperature when the pressure reindicates an absolute pressure of 400 torr.					
	a. 273	b. 373 k	c. 109 k	d 90k		
37.	The density of Neon wil	l be highest at			[]
	b. STP b.	0°C, 2 atm	c. 273° C, 1 atm	d. 273°C, 2atm		
38.	The rate of diffusion of X is	methane at a given	temperature is twice	that of gas X. The mo	olecular v [veight of]
	c. 64	b. 32	c. 4	d. 8		
39.	A 10 cm gas column is t tube is held horizontally with open end up is		• •	1 2		
	a. 3.5 cm b.	9.95 cm	c. 6.2 cm	d. 4.8 cm		
40.	What will be molar volu	me of Nitrogen an	d Argon at 273.15K a	and 1atm	[]
	a. 11.2, 22.4 respectively b. 22.4, 22.4 respectively					
	c. 11.2, 11.2 respect	ively	d. 22.4, 11.2 respec	ctivly		
41.	An open vessel at 27°C remains constant, calcul				that the ve	olume]
	a. 307°C b.	107°C	c. 480°C	d, 207°C		
42.	A manometer is connect connected to the bulb re pressure of the gas in ba	ads 15.0cm. If the				
	a. 1.319 b.	99	c. 0.913	d. 1.214		
43.	Which of the following order is correct for acidic strength]
	a. $So_2 < P_2O_3 < SiO_2 < Al_2O_3$		$b.SiO_2 < SO_2 < Al_2O_3 < P_2O_3$			
	c. $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$ d. $Al_2O_3 < SiO_2 < P_2O_3$			$P_2O_3 < So_2$		
44.	The radius of La^{+3} (z = 3 radius of Lu^{+3} (z = 71)	57) is 1.06 A°. Wh	ich one of the followi	ng given values will	be closest [to the]
	a. 1.60 A°	b. 1.40 A°	c. 1.06 A°	d. 0.85 A°		
45.	The correct ionic radii o	rder			[]
	a. $La^{+3} < Ce^{+3} < C$	$< Pm^{+3} < yb^{+3}$	b. $yb^{+3} < pm^{+3} < Co$	$e^{+3} < La^{+3}$		
	c $La^{+3} = Ce^{+3} < pm^{+3} < yb^{+3}$ d. $yb^{+3} < pm^{+3} < La^{+3} < Ce^{+3}$					
46.	The formation of the ox below	ide on $O^{-2}_{(g)}$ require	es first an exothermic	and then an endother	rmic step [as shown]
	$O_{(g)} + e^- \rightarrow O_{(g)}$	ΔH^0	= -142 kJmol ⁻¹			
	$O^{-2}_{(g)} + e^{-} \rightarrow O^{-2}$					

	a. Oxygen is mole elect	ronegative b. oxyge	en has high electro	n affinity		
	c. O ⁻ ion will tend resist t					
	d. O ⁻ ion has comparatively larger size than oxygen atom					
47.	Consider N^{-3} , O^{-2} , F^{-} , Na^{+} , Mg^{+2} and Al^{+3} ions what is common in then				[]
	a. Number of electro	ns	b. Number	b. Number of valence electrons		
	c. Number of protons	5	d. All the al	bove		
48.	The correct IP order is				[]
	 a. P < S < O < N c. S < O < P < N 		b. S < P < 0			
			d. P < S <n< td=""><td colspan="2">$d. P \le S \le N \le O$</td><td></td></n<>	$d. P \le S \le N \le O$		
49.	Which pair of atomic numbers belongs to S – blocks				[]
	a. 3, 12	b. 6, 12	c. 7, 15	d. 9, 17		
50.	Be resembles much with				[]
	a. Li	b. Al	c. Zn	d. Ra		