DR K.K.R'S GOWTHAM(E.M) SCHOOL RAJAMAHENDRAVARAM

FACT TEST
Marks : 100M
Class: 9-A1,A2
Time: $\mathbf{2 1 / 2}$ hrs
Subject: MATHS, PHYSICS, CHEMISTRY

Choose the correct answer

1. Let the function $f(x)$ be defined as follow

$f(x)$ has
a.a local minimum at $x=\frac{\pi}{2} \quad$ b. a global maximum at $x=\frac{\pi}{2} \quad$ c. an absolute maximum at $x=\pi$
2. A bell tent consists of a conical portion above a cylindrical portion near the ground. For a given volume and a circular base of a given radius, the amount of the canvas used is a minimum when the semi-vertical angle of the cone is
a. $\cos ^{-1} 2 / 3$
b. $\sin ^{-1} 2 / 3$
c. $\cos ^{-1} 1 / 3$
d. None of these
3. A rectangle is inscribed in an equilateral triangle of side length 2a units. The maximum area of this rectangle can be
a. $\sqrt{3} a^{2}$
b. $\frac{\sqrt{3} a^{2}}{4}$
c. a^{2}
d. $\frac{\sqrt{3} a^{2}}{2}$
4. The maximum area of the triangle rectangle whose sides pass through the vertices of a given rectangle of sides a and b is
a. 2(ab)
b. $\frac{1}{2}(a+b)^{2}$
c. $\frac{1}{2}\left(a^{2}+b^{2}\right)$
d. None of these
5. The minimum value of $27 \sec x+64 \operatorname{cosec} x$ for $x \in\left(0, \frac{\pi}{2}\right)$ is and is obtained at
a. $25, \tan ^{-1}\left(\frac{4}{3}\right)$
b. $125, \tan ^{-1}\left(\frac{4}{3}\right)$
c. $125, \tan ^{-1}\left(\frac{3}{4}\right)$
d. $25, \tan ^{-1}\left(\frac{3}{4}\right)$
6. A wire of length 20 cm is cut into two parts which are bent in the form of a square and a circle, then the least value of the sum of areas so formed is
a. $\frac{400}{\pi+4}$
b. $\frac{20}{\pi+4}$
c. $\frac{5}{\pi+4}$
d. $\frac{100}{\pi+4}$
7. The maximum value of the area of the triangle with vertices $(a, 0)(a \cos \theta, b \sin \theta)$ and $(a \cos \theta,-b \sin \theta)$ is
a. $\frac{3 \sqrt{3} a b}{4}$
b. $\sqrt{3} a b$
c. $\frac{3 \sqrt{3 a b}}{4}$
d. $\sqrt{3 a b}$
8. A point on the hypotenuse of a right angle $\Delta^{l e}$ is at a distance of ' a ' and ' b ' units from the sides, then the least value of the hypotenuse is
a. $\left(a^{2 / 3}-b^{3 / 2}\right)^{3 / 2}$
b. $\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}$
c. $a b$
d. $a^{2 / 3}+b^{2 / 3}$
9. The function $\mathrm{f}(\mathrm{x})=\cos \left(\frac{\pi}{x}\right)$ is monotonically increasing in the interval (k is any positive integer) is[]
a. $\left(\frac{1}{2 k+1}, \frac{1}{2 k+2}\right)$
b. $\left(\frac{1}{2 k+1}, \frac{1}{2 k}\right)$
c. $\left(\frac{1}{2 k}, \frac{1}{2 k+1}\right)$
d. $\left(\frac{1}{2 k+2}, \frac{1}{2 k+1}\right)$
10. Let f, g and h be real-valued functions defined on the interval $[0,1] \mathrm{by} \mathrm{f}(\mathrm{x})=e^{x^{2}}+e^{-x^{2}}$. If a, b and c denote, respectively, the absolute maximum of f, g and h on $[0,1]$, then
a. $\mathrm{a}=\mathrm{b}$ and $\mathrm{c} \neq \mathrm{b}$
b. $\mathrm{a}=\mathrm{c}$ and $\mathrm{a} \neq \mathrm{b}$
c. a $\neq \mathrm{b}$ and $\mathrm{c} \neq \mathrm{b}$
d. $a=b=c$
11. If the constant term in the expansion $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 then k is
a. $\pm 3^{1 / 4}$
b. $\pm 4^{1 / 3}$
c. ± 2
d. ± 3
12. The greatest integer which divides the number $101^{100}-1$ is
a. 10^{2}
b. 10^{3}
c. 10^{4}
d. 10^{5}
13. ${ }^{6} C_{5}+\sum_{j=1}^{5} 11-j \mathrm{C}_{4}=$
a. ${ }^{6} C_{6}$
b. ${ }^{11} C_{4}$
c. ${ }^{11} C_{5}$
d. ${ }^{12} C_{5}$
14. Coefficient of x^{3} in $1+(1+x)+(1+x)^{2}+\ldots \ldots .+(1+x)^{n}$ is
a. ${ }^{n} C_{4}$
b. ${ }^{(n+1)} C_{4}$
c. ${ }^{(n+2)} C_{4}$
d. ${ }^{(n+1)} C_{2}$
15. The coefficient of $x^{2} y^{3} z^{4}$ in $(a x-b y+c z)^{9}$ is
a. $1260 a^{2} b^{3} c^{4}$
b. $-1220 a^{2} b^{3} c^{4}$
c. $-1260 a^{2} b^{3} c^{4}$
d. $1220 a^{2} b^{3} c^{4}$
16. Larger of $99^{50}+100^{50}$ and 101^{50} is
a. 101^{50}
b. $99^{50}+100^{50}$
c. Both are equal
d. cannot be decided
17. The number of integral terms in the expansion of $\left((\sqrt{3}+\sqrt[4]{5})^{200}\right.$ is
a. 49
b. 50
c. 52
d. 51
18. If. $(5+2 \sqrt{6})^{n}=\mathrm{I}+\mathrm{f}$, where $\mathrm{I} \in \mathrm{N}, \mathrm{n} \in \mathrm{N}$ and $\mathrm{O}<\mathrm{f}<1$, then $\mathrm{I}=$
a. $\frac{1}{f}-f$
b. $\frac{1}{1+f}-f$
c. $\frac{1}{1-f}-f$
d. $\frac{1}{1-f}+f$
19. For $\mathrm{r}=0,1, \ldots \ldots .10$, Let Ar, Br and Cr denote, respectively, the coefficient of x^{r} in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$ is equal to $\mathrm{r}=1$
a. $\mathrm{B}_{10}-\mathrm{C}_{10}$
b. $\mathrm{A}_{10}\left(\mathrm{~B}^{2}{ }_{10}-\mathrm{C}_{10} \mathrm{~A}_{10}\right)$
c. 0
d. $\mathrm{C}_{10}-\mathrm{B}_{10}$
20. The sum $\sum_{r=1}^{10}\left(r^{2}+1\right) \times(r!)$ is equal to
a. $10 \times(11!)$
b. $101 \times(10!)$
c. (11 !)
d. $11 \times(11!)$

PHYSICS

21. If the angle of a thin prism is 4.5° and refractive index 1.52 the deviation produced by the prism is[]
a. 2^{0}
b. 3^{0}
c. 2.34°
d. 0.76°
22. Find the dispersive power of flint glass. The refractive index of flint glass for red, yellow, and violet light are. $1.613,1.620$ and 1.632 respectively
a. 0.0306
b. 0.828
c. 1.414
d. 1.65
23. A thin prism p_{1} of angle of prism 4° and refractive index 1.54 is combined with another thin prism p_{2} of refractive index. 1.72 for dispersion without deviation. The angle of prism of P_{2} is
a. 5.33°
b. 4°
c. 3°
d. 2.6°
24. The refractive indices for the light of violet and red colours of any material are 1.66 and 1.64 respectively. If the angle of prism made of this material is 10^{10} then angular dispersion will be
a. 0.20°
b. 0.10°
c. 0.40°
d. 1°
25. For focal length of a thin lens for red and violet light are 90 cm and 86.4 cm find the dispersive power of the material of the lens
a. 0.036
b. 0.042
c. 1.414
d. 1.65
26. Two lenses having $f_{1}: f_{2}=2: 3$ has combination to make no dispersion. Find the ratio of dispersive power of glasses used
a. 2 : 3
b. $3: 2$
c. 4 : 9
d. $9: 4$
27. An air bubble in a glass slab $(\mu=1.5)$ is 5 cm deep when viewed from one face and 2 cm deep when viewed from the opposite face. The thickness of the glass slab is
a. 7 cm
b. 10 cm
c. 7.5 cm
d. 10.5 cm
28. A ring of radius 1 cm is placed 1 m infront of a spherical glass ball of radius 25 cm with refractive index 1.50 . Determine the position of the final image of the ring and its magnification
a. $\frac{200}{7} \mathrm{~cm}$
b. $-\frac{5}{7} \mathrm{~cm}$
c. $-\frac{3}{7} \mathrm{~cm}$
d. $-\frac{300}{7} \mathrm{~cm}$
29. A transparent sphere of radius R made of material of refractive index $\frac{3}{2}$ is kept in air. The distance from the centre of sphere must a point object be placed so as to form a real image at the same distance from the sphere is
a. R
b. $2 R$
c. 3 R
d. 4 R
30. A ray incident at a point at an angle of incidence 60° enters a glass sphere of $\mu=\sqrt{3}$ and is reflected and refracted at the farther surface of the sphere the angle between the reflected and refracted rays at this surface is
a. 50°
b. 90°
c. 60°
d. 40°
31. An object is placed in a denser medium at a distance of 24 cm from a convex surface of denser medium of refractive index 1.5 and radius of curvature 24 cm . Find the position of image
a. 72 cm (real)
b. 24 cm (virtual)
c. 48 cm (virtual)
d. 84 cm (real)
32. A prism of refracting angle 60° is made with a material of refractive index μ. For a certain wavelength of light the angle of minimum deviation is 30°. For this wavelength of μ material is
a. 1.732
b. 2.828
c. 1.414
d. 1.65
33. The minimum deviations suffered by red, yellow and violet beams passing through an equilateral transparent prism are $38.4^{\circ}, 38.7^{\circ}$ and 39.2° respectively. Calculate the dispersive power of the medium []
a. 0.0402
b. 0.0206
c. 1.414
d. 1.65
34. Three prisms of crown glass, each have angle of prism 9° and two prisms of flint glass are used to make direct vision spectroscope. What will be the angle of flint glass prisms if μ in flint is 1.60 and μ for crown glass is 1.53
a. 11.9°
b. 16.0°
c. 15.3°
d. 9.11°
35. If the refractive indices of a prism for red, yellow and violet colours be $1.61,1.63$ and 1.65 respectively. Then the dispersive power of the prism will be
a. $\frac{1.65-1.62}{1.61-1}$
b. $\frac{1.62-1.61}{1.65-1}$
c. $\frac{1.65-1.61}{1.63-1}$
d. $\frac{1.65-1.63}{1.61-1}$

CHEMISTRY

36. The ionic radii in A° of $\mathrm{N}^{-3}, \mathrm{O}^{-2}, \mathrm{~F}^{-}$respectively are
a. $1.36,1.40,1.71$
b. $1.36,1.71,1.40$
c. $1.71,1.40,1.36$
d. $1.71,1.36,1.40$
37. Which of the following alkaline earth metal sulphates has its hydration enthalpy greater than its lattice energy
a. CaSO_{4}
b. BeSO_{4}
c. BaSO_{4}
d. SrSO_{4}
38. The first ionisation potential of Na is 5.1 eV . The value of electron gain enthalpy of Na^{+}is []
a. -2.55 eV
b. -5.1 eV
c. -10.2 eV
d. +2.55 eV
39. Which of the following represents the correct order of second ionisation potential of carbon, Nitrogen, Oxygen and fluorine is
a. $C>N>O>F$
b. $\mathrm{O}>\mathrm{N}>\mathrm{F}>\mathrm{C}$
c. $\mathrm{O}>\mathrm{F}>\mathrm{N}>\mathrm{C}$
d. $\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{C}$
40. Amongst the following elements the one having highest ionisation energy
a. $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$
b. $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
c. $[\mathrm{Ne}] 3 s^{2} 3 \mathrm{p}^{2}$
d. $[A r] 3 d^{10} 4 s^{2} 4 p^{3}$
41. Which of the following has the maximum number of unpaired electrons
a. mg^{+2}
b. Ti^{+3}
c. V^{+3}
d. Fe^{+2}
42. Which is the most stable +2 oxidation state
a. Sn
b. Pb
c. Fe
d. Ag
43. Identify the least stable ion among the following
a. Li^{+}
b. Be^{-}
c. B^{-}
d. C^{-}
44. The first four ionisation values for an element are 191, 578, 872 and 5962 k.Cal. the number of valence electrons in the elements is
a. 1
b. 2
c. 3
d. 4
45. Among $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{3} \& \mathrm{SO}_{2}$ the correct order of Acidic strength is
a. $\mathrm{SO}_{2}<\mathrm{P}_{2} \mathrm{O}_{3}<\mathrm{SiO}_{2}<\mathrm{Al}_{2} \mathrm{O}_{3}$
b. $\mathrm{SiO}_{2}<\mathrm{SO}_{2}<\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{P}_{2} \mathrm{O}_{3}$
c. $\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{SiO}_{2}<\mathrm{SO}_{2}<\mathrm{P}_{2} \mathrm{O}_{3}$
d. $\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{SiO}_{2}<\mathrm{P}_{2} \mathrm{O}_{3}<\mathrm{SO}_{2}$
46. The radius of $\mathrm{La}^{+3}(Z=57)$ is $106 \mathrm{~A}^{\circ}$, Then the radius of $\mathrm{Lu}^{+3}(Z=71)$ may be
a. $1.60 \mathrm{~A}^{\circ}$
b. $1.40 \mathrm{~A}^{\circ}$
c. $1.06 \mathrm{~A}^{\circ}$
d. $0.85 \mathrm{~A}^{\circ}$
47. $\mathrm{Ce}^{+3}, \mathrm{La}^{+3}, \mathrm{Pm}^{+3}$ and yb^{+3} have ionic radii in the increasing order as
a. $\mathrm{La}^{+3}<\mathrm{Ce}^{+3}<\mathrm{Pm}^{+3}<\mathrm{yb}^{+3}$
b. $\mathrm{yb}^{+3}<\mathrm{Pm}^{+3}<\mathrm{Ce}^{+3}<\mathrm{La}^{+3}$
c. $\mathrm{La}^{+3}=\mathrm{Ce}^{+3}<\mathrm{pm}^{+3}<\mathrm{yb}^{+3}$
d. $\mathrm{yb}^{+3}<\mathrm{pm}^{+3}<\mathrm{La}^{+3}<\mathrm{Ce}^{+3}$
48. Energy of an electron in the ground state of Hydrogen atom is $-2.18 \times 10^{-18} \mathrm{~J}$. Calculate the ionisation enthalpy of atomic hydrogen in terms of Jmol^{-1}
a. 2.18×10^{-18}
b. 13.12×10^{5}
c. 3.16×10^{-13}
d. 2.21×10^{6}
49. Which of the following does not represent correct order of the property indicated
a. $\mathrm{Se}^{+3}>\mathrm{Cr}^{+3}>\mathrm{Fe}^{+3}>\mathrm{Mn}^{+3}$ - lonic radii
b. $\mathrm{Sc}<\mathrm{Ti}<\mathrm{Cr}<\mathrm{Mn}$ - Density
c. $\mathrm{Mn}^{+2}>\mathrm{Ni}^{+2}>\mathrm{Co}^{+2}>\mathrm{Fe}^{+2}-$ lonic radii
d. Feo < $\mathrm{Cao}<\mathrm{MnO}<\mathrm{CuO}$ - basic nature
50. The first ionisation enthalpies of two isotopes of an element are
a. Same
b. different
c. some that different
d. $\mathrm{IE}_{1}=\mathrm{IE}_{2}$
$1^{\text {st }}$ isotope $2^{\text {nd }}$ Isotope
