I. Objective type questions :

Maths

1. The harmonic conjugate of (4,-2) W.r.to (2,-4) and (7,1) is
 a. (-8, -14) b. 2,3 c. (-2,-3) d. (13,-5)

2. The points (0,-1) (-2,3) (6,7) (8,3) form
 a. A parallelogram b. a rectangle c. a rhombus d. a square

3. The orthocenter of the Δ formed by A (-1,0) B (-2, ¾) C (-3, -7/6)
 a. (-3,-2) b. (1,3) c. (-1,2) d. none

4. Co ordinates of the point dividing the line segment joining A (1,-2) B (4,7) internally in the ratio 1:2 are
 a. (1,2) b. (2,1) c. (4,3) d. (7,2)

5. The 1st and 2nd points of trisection of the join of (-2, 11) (-5, 2) are
 a. (-3, 0) b. (-3,9) c. (-3,8) d. (-3,-4)

6. Equation of the st line containing the point (1,2) and (3,4)
 a. x+y+1=0 b. x-y +1 =0 c.4x+y=1 d. x+y=2

7. The equation of sides of Δ are x+y-5 =0, x-y +1=0 and y-1 =0 then the circum centre is
 a. (2,1) b. (1,7) c. (2,-2) d. (1,-2)

8. If 6x+8y+7-k (2x+4y+5) =0 is parallel to y axis then k
 a. 1 b. 3 c. 2 d. 1

9. If P, Q are two points on the line 3x+4y+15=0 such that Op = OQ = 9 then the area ΔOPQ
 a. 6 √2 b. 9 √2 c. 12 √2 d. 18 √2

10.Image of (2,3) W.r.t to (-1,3) is
 a. (3,-2) b. (1,1) c. (-4, 3) d. (3,7)

11.$\left(\sqrt{1-\sin^2 100^0}\right)$ (sec 100^0)
 a. -1 b. 0 c. 1 d. 2

12.If tan 20^0 R then $\frac{\tan 250^0 + \tan 340^0}{\tan 200^0 - \tan 110^0}$
 a. $\frac{1+p}{1-p}$ b. $\frac{1-p}{1+p}$ c. 0 d. $\frac{1-p^2}{1+p^2}$

13.Secθ + tan^2θ =5 then secθ =
 a. 3 b. 2 c. -3 d. b and c
14. The value of $\sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta$ is []
 a. 0 b. 1 c. 2 d. 3

15. $a = \sec \theta - \tan \theta$ $b = \csc \theta + \cot \theta$ then $a =$ []
 a. $\frac{b+1}{b-1}$ b. $\frac{1+b}{1-b}$ c. $\frac{b-1}{b+1}$ d. $\frac{1-b}{1+b}$

16. $A+B = 135^0$ then $(1+\cot A) (1+\cot B) =$ []
 a. 1 b. 2 c. 3 d. 4

17. If $\sqrt{3} \cos \theta - \sin \theta$ is positive then θ lies b/w []
 a. $\frac{-2\theta}{3}$ to $\frac{\theta}{3}$ b. $\frac{-\theta}{3}$ to $\frac{\theta}{2}$ c. 0 to $\frac{\theta}{3}$ d. $-\frac{\theta}{2}$ to $\frac{\theta}{2}$

18. $\sin 10^0 - \sin 110^0 + \sin 130^0 =$ []
 a. 0 b. -1 c. 1 d. $\frac{1}{2}$

19. $\tan 55^0 - \tan 10^0 - \tan 55^0 \tan 10^0 =$ []
 a. -1 b. 1 c. $-\sqrt{3}$ d. $\frac{1}{2}$

20. If $\sin x \cos y = \frac{1}{4}$ and $3 \tan x = 4 \tan y$ then $\sin (x-y) =$ []
 a. $\frac{1}{16}$ b. $\frac{7}{16}$ c. $\frac{1}{4}$ d. $\frac{3}{16}$

Physics

21. A body is thrown with velocity $(4i+3j)$ m/s its maximum height is $(g=10m/s^2)$[]
 a. 2.5m b. 0.8m c. 0.9m d. 0.45m

22. For a projectile the ratio of maximum height reached to square of flight time is []
 a. 5:4 b. 5:2 c. 5:1 d. 10:1

23. A body projected with velocity $30m/s$ reaches its maximum height in 15 sec. its range is $(g=10m/s^2)$ []
 a. 45m b. 108m c. $45 \sqrt{3}$ d. 54m

24. A hose pipe lying on the ground shoots a stream of water upwards at an angle 60^0 to the horizontal at a speed of $20m/s$. the water strikes a wall 20m away at a height of $(g=10m/s^2)$ []
 a. 14.64 m b. 7.32m c. 29.28m d. none of these

25. A person throws a bottle into a dustbin at the same height as he is 2m away at an angle of 45^0. The velocity of thrown is []
 a. g b. \sqrt{g} c. 2g d. $\sqrt{2} g$

26. A body is projected horizontally from the tap of tower with a velocity of $30m/s$. the velocity of the body 4 sec after projection is $(g=10m/s^2)$ []
27. The height and width of each step of a staircase are 20 cm and a ball rolls off the top of a stair with horizontal velocity \(V \) and hits the fifth step. The magnitude of \(V \) is \(g = 10 \text{ m/s}^2 \).
\[\text{g} = 10 \text{ m/s}^2 \]
\[\begin{align*}
a. & \ 1.5 \sqrt{5} \text{ m/s} \\
b. & \ 3 \sqrt{5} \text{ m/s} \\
c. & \ 7.5 \text{ m/s} \\
d. & \ 1.5 \text{ m/s} \\
\end{align*} \]

28. Find the time of flight and range of the projectile along the inclined plane as shown in figure.
\[\text{Figure} \]
\[\begin{align*}
a. & \ 1.69 \text{ s}, 39 \text{ m} \\
b. & \ 0.69 \text{ s}, 49 \text{ m} \\
c. & \ 69 \text{ s}, 49 \text{ m} \\
d. & \ 2.99 \text{ s}, 29 \text{ m} \\
\end{align*} \]

29. The relation between coefficient of static friction as a angle of friction is
\[\begin{align*}
a. & \ \phi = \cot^{-1} (m) \\
b. & \ \phi = \tan^{-1} \left(\frac{m}{1+m^2} \right) \\
c. & \ \phi = \cos^{-1} (m) \\
d. & \ \phi = \sin^{-1} \left(\frac{m}{\sqrt{1+m^2}} \right) \\
\end{align*} \]

30. A vehicle of mass \(m \) is moving on a rough horizontal road with momentum \(P \). If the coefficient of friction between the tyres and the road be \(m \) u. then the stopping distance is
\[\begin{align*}
a. & \ \frac{P}{2\mu mg} \\
b. & \ \frac{P^2}{2\mu mg} \\
c. & \ \frac{P^2}{2\mu m^2 g} \\
d. & \ \frac{P}{2\mu m^2 g} \\
\end{align*} \]

31. In the figure shown find acceleration of block and force of friction \(F = 20\sqrt{2} \text{ N} \).
\[\begin{align*}
a. & \ 1.2 \text{ m/s}^2, 4 \text{ N} \\
b. & \ 2 \text{ m/s}^2, 4 \text{ N} \\
c. & \ 2/3 \text{ m/s}^2, 8 \text{ N} \\
d. & \ 1.5 \text{ m/s}^2, 8 \text{ N} \\
\end{align*} \]

32. A wooden box is placed on the floor of lorry moving with an acceleration of \(6 \text{ m/s}^2 \). If \(u = 0.6 \). the acceleration of the box relative to lorry is \(g = 9.8 \text{ m/s}^2 \).
\[\begin{align*}
a. & \ 1 \text{ m/s}^2 \\
b. & \ 1.1 \text{ m/s}^2 \\
c. & \ 1.2 \text{ m/s}^2 \\
d. \ 0 \\
\end{align*} \]

33. A block of weight 5N is pressed against a vertical wall with a horizontal force of 12N. If \(u = 0.6 \). the frictional force acting on the body is
\[\begin{align*}
a. & \ 8 \text{ N} \\
b. & \ 5 \text{ N} \\
c. & \ 7.2 \text{ N} \\
d. & \ 10 \text{ N} \\
\end{align*} \]

34. A brick of mass 2kg just begins to slide down an inclined plane at an angle of \(45^0 \) with horizontal. The force of friction is
\[\begin{align*}
a. & \ 19.6 \cos 45^0 \\
b. & \ 9.8 \sin 45^0 \\
c. & \ 19.6 \sin 45^0 \\
d. & \ 9.78 \cos 45^0 \\
\end{align*} \]
35. A block slides down a rough inclined plane of inclination 45°. If coefficient of kinetic friction is 0.5 then acceleration of the sliding block is []
 a. \(\frac{4.9}{\sqrt{2}} \) m/s² b. \(\frac{9.8}{\sqrt{2}} \) m/s² c. \(\frac{2.45}{\sqrt{2}} \) m/s² d. 4.9 m/s²

Chemistry

36. Torr is a unit of []
 a. Mass b. volume c. pressure d. density

37. 20 litres of hydrogen gas at NTP weight about []
 a. 12.2g b. 44.8g c. 1.8g d. 20g

38. At constant temperature for a given mass of gas, pressure of the gas if volume ‘v’ becomes three times []
 a. P b. p/4 c. p/3 d. 3p

39. An open vessel at 27°C is heated until three fourth mass of the air in it has been expelled neglecting the expansion of the vessel, the temperature to which the vessel has to be heated is []
 a. 927°C b. 108°C c. 1000°C d. 477°C

40. What percentage of volume of air will be expelled from a vessel containing 600 ml at 27° when it is heated to 37°C at the same pressure []
 a. 3.33% b. 20% c. 67% d. 66%

41. Gas deviate from ideal behavior at []
 a. Low T and high ‘P’ b. high T and low P
 c. high T and high P d. high T and low P

42. The density of a gas at STP is 2g/l. its molecular weight is []
 a. 22.4 b. 56 c. 44.8 d. 30

43. The mass of 2.46 lit of CH₄ at 1.5 atm and 27°C is []
 a. 1.6g b. 2.4g c. 22.4g d. 3.0g

44. The vapour density of a gas is 11.2. the volume occupied by 10g of the gas at stp is []
 a.10L b. 1L c. 11.2L d. 5.6L

45. the number of oxygen molecule present in 1 lit flask at a pressure of 101.325 X10⁻¹² KPa and temperature 101.325k is []
 a. 7.243 X 10¹⁰ b. 7.243 X 10¹¹ c. 7.243 X 10¹² d. 7.243 X 10¹³

46. mixing of two gases by diffusion is []
 a. reversible b. irreversible c. exothermic d. endothermic

47. the rate of diffusion of gas A is double the rate of gas B. the ratio of their molecular weight is []
 a. 1:2 b. 1:4 c. 2:1 d. 4:1
48. Dalton’s law of partial pressures is applicable to []
a. NO + O₂ b. H₂ + Cl₂ c. NH₃ + HCl d. Co₂ + O₂

49. kinetic energy of 1 mole of oxygen gas in calories []
a. 2T b. 3T c. 1.5T d. 0.5T

50. the root mean square velocity of an ideal gas at constant pressure varies with density (d) as []
a. d² b. d c. √d d. 1/√d