Dr.K.K.R GOWTHAM EDUCATIONAL INSTITUTIONS :: A.P \& T.S

Maths

1. The harmonic conjugate of $(4,-2)$ W.r.to $(2,-4)$ and $(7,1)$ is
a. $(-8,-14)$
b. 2,3
c. $(-2,-3)$
d. $(13,-5)$
2. The points $(0,-1)(-2,3)(6,7)(8,3)$ form
a. A parallelogram
b. a rectangle
c. a rhombus
d. a square
3. The orthocenter of the Δ^{le} formed by $\mathrm{A}(-1,0) \mathrm{B}(-2,3 / 4) \mathrm{C}(-3,-7 / 6)$
a. $(-3,-2)$
b. $(1,3)$
c. $(-1,2)$
d. none
4. Co ordinates of the point dividing the line segment joining $\mathrm{A}(1,-2) \mathrm{B}(4,7)$ internally in the ratio 1:2 are
a. $(1,2)$
b. $(2,1)$
c. $(4,3)$
d. $(7,2)$
5. The $1^{\text {st }}$ and $2^{\text {nd }}$ points of trisection of the join of $(-2,11)(-5,2)$ are
a. $(-3,0)(-4,6)$
b. $(-3,9)(-4,5)$
c. $(-3,8)(-4,5)$
d. $(-3,-4)(8,-5)$
6. Equation of the st line containing the point $(1,2)$ and $(3,4)$
a. $X+y+1=0$
b. $x-y+1=0$
c. $4 \mathrm{x}+\mathrm{y}=1$
d. $x+y=2$
7. The equation of sides of $\Delta^{\text {le }}$ are $x+y-5=0, x-y+1=0$ and $y-1=0$ then the circum centre is
a. $(2,1)$
b. $(1,7)$
c. $(2,-2)$
d. $(1,-2)$
8. If $6 x+8 y+7-k(2 x+4 y+5)=0$ is parallel to y axis then k
a. 1
b. 3
c. 2
d. 1
9. If P, Q are two points on the line $3 x+4 y+15=0$ such that $O p=O Q=9$ then the area $\triangle \mathrm{OPQ}$
a. $6 \sqrt{2}$
b. $9 \sqrt{2}$
c. $12 \sqrt{2}$
d. $18 \sqrt{2}$
10.Image of $(2,3)$ W.r.t to $(-1,3)$ is
a. $(3,-2)$
b. $(1,1)$
c. $(-4,3)$
d. $(3,7)$
10. $\left(\sqrt{1-\sin ^{2} 100}\right)\left(\sec 100^{\circ}\right)$
a. -1
b. 0
c. 1
d. 2
12.If $\tan 20^{\circ} \mathrm{R}$ then $\frac{\tan 250^{\circ}+\tan 340^{\circ}}{\tan 200^{\circ}-\tan 110^{\circ}}=$
a. $\frac{1+p}{1-p}$
b. $\frac{1-p}{1+p}$
c. 0
d. $\frac{1-p^{2}}{1+p^{2}}$
11. $\operatorname{Sec} \theta+\tan ^{2} \theta=5$ then $\sec \theta=$
a. 3
b. 2
c. -3
d. band c
12. The value of $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta$ is
a. 0
b. 1
c. 2
d. 3
13. $a=\sec \theta-\tan \theta \quad b=\operatorname{cosec} \theta+\cot \theta$ then $a=$
a. $\frac{b+1}{b-1}$
b. $\frac{1+b}{1-b}$
c. $\frac{b-1}{b+1}$
d. $\frac{1-b}{1+b}$
14. $\mathrm{A}+\mathrm{B}=135^{\circ}$ then $(1+\cot \mathrm{A})(1+\cot \mathrm{B})=$
a. 1
b. 2
c. 3
d. 4
17.If $\sqrt{3} \cos \theta-\sin \theta$ is positive then θ lies b / w
a. $\frac{-2 \lambda}{3}$ to $\frac{\lambda}{3}$
b. $\frac{-\lambda}{3}$ to $\frac{\lambda}{2}$
c. $0 t o \frac{\lambda}{3}$
d. $\frac{-\lambda}{2}$ to $\frac{\lambda}{2}$
15. $\operatorname{Sin} 10^{\circ}-\sin 110^{\circ}+\sin 130^{\circ}=$
a. 0
b. -1
c. 1
d. $1 / 2$
16. Tan $55^{\circ}-\tan 10^{\circ}-\tan 55^{\circ} \tan 10^{\circ}$
a. -1
b. 1
c. $-\sqrt{3}$
d. $1 / 2$
20.If $\sin x \cos y=1 / 4$ and $3 \tan x=4$ tany then $\sin (x-y)=$ \square
a. $\frac{1}{16}$
b. $\frac{7}{16}$
c. $3 / 4$
d. $\frac{3}{16}$

Physics

21. A body is thrown with velocity $\left(4 i+3 j() \mathrm{m} / \mathrm{s}\right.$ its maximum height is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)[\quad]$
a. 2.5 m
b. 0.8 m
c. 0.9 m
d. 0.45 m
22.for a projectile the ratio of maximum height reached to square of flight time is[]
a. 5:4
b. 5:2
c. 5:1
d. $10: 1$
23.A body projected with velocity $30 \mathrm{~m} / \mathrm{s}$ reaches its maximum height in 15 sec . its range is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. 45 m
b. 108 m
c. $45 \sqrt{3}$
d. 54 m
24.A hose pipe lying on the ground shoots a stream of water upwards at an angle 60° to the horizontal at a speed of $20 \mathrm{~m} / \mathrm{s}$. the water strikes a wall 20 m a way at a height of ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
a. 14.64 m
b. 7.32 m
c. 29.28 m
d. none of these
25.A person throws a bottle into a dustbin at the some height as he is 2 m away at an angle of 45^{0}. The velocity of thrown is
[]
a. g
b. \sqrt{g}
c. 2 g
d. $\sqrt{2} \mathrm{~g}$
26.a body is projected horizontally from the tap of tower with a velocity of $30 \mathrm{~m} / \mathrm{s}$. the velocity of the body 4 sec after projection is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
a. $40 \mathrm{~m} / \mathrm{s}$
b. $20 \mathrm{~m} / \mathrm{s}$
c. $50 \mathrm{~m} / \mathrm{s}$
d. $100 \mathrm{~m} / \mathrm{s}$
27.The height and width of each step of a staircase are 20 cm and A ball rolls off the top of a stair with horizontal velocity V and hits the fifth step. The magnitude of V is $[\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}$]
a. $1.5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
b. $3 \sqrt{5} \mathrm{~m} / \mathrm{s}$
c. $7.5 \mathrm{~m} / \mathrm{s}$
d. $1.5 \mathrm{~m} / \mathrm{s}$
28.Find the time of flight and range of the projectile along the inclined plane as shown in figure
a. $1.69 \mathrm{~s}, 39 \mathrm{~m}$
b. $0.69 \mathrm{~s}, 49 \mathrm{~m}$
c. $69 \mathrm{~s}, 49 \mathrm{~m}$
d. $2.99 \mathrm{~s}, 29 \mathrm{~m}$

29.The relation between coefficient of static friction as a angle of friction is
a. $\phi=\cot ^{-1}(\mathrm{~m})$
c $\phi=. \cos ^{-1}(\mathrm{~m})$
b. $\phi=\tan ^{-1}(1 / \mathrm{m})$
d. $\phi=\sin ^{-1}\left(\frac{m}{\sqrt{1+m^{2}}}\right)$
30.A vehicle of mass m is moving on a rough horizontal road with momentum P. if the coefficient of friction between the tyres and the road be mu . then the stopping distance is
a. $\frac{p}{2 \mu m g}$
b. $\frac{p^{2}}{2 \mu m g}$
c. $\frac{p^{2}}{2 \mu m^{2} g}$
d. $\frac{p}{2 \mu m^{2} g}$
31.In the figure shown find acceleration of block and force of friction $\mathrm{F}=20 \sqrt{2} \mathrm{~N}[\quad]$
a. $1.2 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~N}$
b. $2 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~N}$
c. $2 / 3 \mathrm{~m} / \mathrm{s}^{2}, 8 \mathrm{~N}$
d. $1.5 \mathrm{~m} / \mathrm{s}^{2}, 8 \mathrm{~N}$

32.A wooden box is placed on the floor of lorry moving with an acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$. If $\mathrm{u}=0.6$. the acceleration of the box relative to lorry is $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. $1 \mathrm{~m} / \mathrm{s}^{2}$
b. $1.1 \mathrm{~m} / \mathrm{s}^{2}$
c. $1.2 \mathrm{~m} / \mathrm{s}^{2}$
d. 0
33.A block of weight 5 N is pressed against a vertical wall with a horizontal force of 12 N . if $u=0.6$. the frictional force acting on the body is
a. 8 N
b. 5 N
c. 7.2 N
d. 10 N
34.A brick of mass 2 kg just begins to slide down an inclined plane at an angle of 45° with horizontal. The force of friction is
a. $19.6 \cos 45^{\circ}$
b. $9.8 \sin 45^{\circ}$
c. $19.6 \sin 45^{\circ}$
d. $9.78 \cos 45^{\circ}$
35.A block slides down a rough inclined plane of inclination 45°. If coefficient of kinetic friction is 0.5 then acceleration of the sliding block is
a. $\frac{4.9}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$
b. $\frac{9.8}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$
c. $\frac{2.45}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$
d. $4.9 \mathrm{~m} / \mathrm{s}^{2}$

Chemistry
36. Torr is a unit of
a. Mass
b. volume
c. pressure
d. density
37.20 litres of hydrogen gas at NTP weight about
a. 12.2 g
b. 44.8 g
c. 1.8 g
d. 20 g
38. At constant temperature for a given mass of gas, pressure of the gas if volume' v ' becomes three times
a. P
b. $\mathrm{p} / 4$
c. $\mathrm{p} / 3$
d. 3 p
39.An open vessel at $27^{\circ} \mathrm{C}$ is heated until three fourth mass of the air in it has been expelled neglecting the expansion of the vessel, the temperature to which the vessel has to be heated is
a. $927^{\circ} \mathrm{C}$
b. $108^{\circ} \mathrm{C}$
c. $1000^{\circ} \mathrm{C}$
d. $477^{\circ} \mathrm{C}$
40. What percentage of volume of air will be expelled from a vessel containing 600 ml at 27^{0} when it is heated to $37^{\circ} \mathrm{C}$ at the same pressure
a. 3.33%
b. 20%
c. 67%
d. 66%
41. Gas deviate from ideal behavior at
a. Low T and high ' P '
c. high T and high P
b. Low T and low P
d. high T and low P
42.The density of a gas at STP is $2 \mathrm{~g} / 1$. its molecular weight is
a. 22.4
b. 56
c. 44.8
d. 30
43.The mass of 2.46 lit of CH_{4} at 1.5 atm and $27^{\circ} \mathrm{C}$ is
a. 1.6 g
b. 2.4 g
c. 22.4 g
d. 3.0 g
44.The vapour density of a gas is 11.2 . the volume occupied by 10 g of the gas at stp is
a.10L
b. 1L
c. 11.2 L
d. 5.6 L
45. the number of oxygen molecule present in 1 lit flask at a pressure of 101.325×10^{-12} KPa and temperature 101.325 k is
a. 7.243×10^{10}
b. 7.243×10^{11}
c. 7.243×10^{12}
d. 7.243×10^{13}
46. mixing of two gases by diffusion is
a. reversible
b. irreversible
c. exothermic
d. endothermic
47. the rate of diffusion of gas A is double the rate of gas B. the ratio of their molecular weight is
a. 1:2
b. 1:4
c. 2:1
d. 4:1
48. Dalton's law of partial pressures is applicable to
a. $\mathrm{NO}+\mathrm{O}_{2}$
b. $\mathrm{H}_{2}+\mathrm{Cl}_{2}$
c. $\mathrm{NH}_{3}+\mathrm{HCl}$
d. $\mathrm{Co}_{2}+\mathrm{O}_{2}$
49. kinetic energy of 1 mole of oxygen gas in calories
[]
a. 2 T
b. 3 T
c. 1.5 T
d. 0.5 T
50. the root mean square velocity of an ideal gas at constant pressure varies with density (d) as
a. d^{2}
b.d
c. \sqrt{d}
d. $1 / \sqrt{d}$

