Dr.K.K.R GOWTHAM EDUCATIONAL INSTITUTIONS :: A.P \& T.S

Maths

1. The harmonic conjugate of $(4,-2)$ W.r.to $(2,-4)$ and $(7,1)$ is
a. $(-8,-14)$
b. 2,3
c. $(-2,-3)$
d. $(13,-5)$
2. The points $(0,-1)(-2,3)(6,7)(8,3)$ form
a. A parallelogram
b. a rectangle
c. a rhombus
d. a square
3. The orthocenter of the $\Delta^{\text {le }}$ formed by $\mathrm{A}(-1,0) \mathrm{B}(-2,3 / 4) \mathrm{C}(-3,-7 / 6)$
a. $(-3,-2)$
b. $(1,3)$
c. $(-1,2)$
d. none
4. Co ordinates of the point dividing the line segment joining $A(1,-2) B(4,7)$ internally in the ratio 1:2 are
a. $(1,2)$
b. $(2,1)$
c. $(4,3)$
d. $(7,2)$
5. The $1^{\text {st }}$ and $2^{\text {nd }}$ points of trisection of the join of $(-2,11)(-5,2)$ are
a. $(-3,0)(-4,6)$
b. $(-3,9)(-4,5)$
c. $(-3,8)(-4,5)$
d. $(-3,-4)(8,-5)$
6. Equation of the st line containing the point $(1,2)$ and $(3,4)$
a. $X+y+1=0$
b. $x-y+1=0$
c. $4 \mathrm{x}+\mathrm{y}=1$
d. $x+y=2$
7. The equation of sides of Δ^{le} are $\mathrm{x}+\mathrm{y}-5=0, x-y+1=0$ and $y-1=0$ then the circum centre is
a. $(2,1)$
b. $(1,7)$
c. $(2,-2)$
d. $(1,-2)$
8. If $6 x+8 y+7-k(2 x+4 y+5)=0$ is parallel to y axis then k
a. 1
b. 3
c. 2
d. 1
9. If P, Q are two points on the line $3 x+4 y+15=0$ such that $O p=O Q=9$ then the area $\Delta \mathrm{OPQ}$
a. $6 \sqrt{2}$
b. $9 \sqrt{2}$
c. $12 \sqrt{2}$
d. $18 \sqrt{2}$
10. Image of $(2,3)$ W.r.t to $(-1,3)$ is
a. $(3,-2)$
b. $(1,1)$
c. $(-4,3)$
d. $(3,7)$
11. $\left(\sqrt{1-\sin ^{2} 100}\right)\left(\sec 100^{\circ}\right)$
a. -1
b. 0
c. 1
d. 2
12. If $\tan 20^{\circ} \mathrm{R}$ then $\frac{\tan 250^{\circ}+\tan 340^{\circ}}{\tan 200^{\circ}-\tan 110^{\circ}}=$
a. $\frac{1+p}{1-p}$
b. $\frac{1-p}{1+p}$
c. 0
d. $\frac{1-p^{2}}{1+p^{2}}$
13. $\operatorname{Sec} \theta+\tan ^{2} \theta=5$ then $\sec \theta=$
a. 3
b. 2
c. -3
d. band c
14. The value of $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta$ is
a. 0
b. 1
b.
c. 2
d. 3
15. $a=\sec \theta-\tan \theta \quad b=\operatorname{cosec} \theta+\cot \theta$ then $a=$
a. $\frac{b+1}{b-1}$
b. $\frac{1+b}{1-b}$
c. $\frac{b-1}{b+1}$
d. $\frac{1-b}{1+b}$
$\frac{1-b}{1+b}$
16. $\mathrm{A}+\mathrm{B}=135^{\circ}$ then $(1+\cot \mathrm{A})(1+\cot \mathrm{B})=$
a. 1
b. 2
c. 3
d. 4
17. If $\sqrt{3} \cos \theta-\sin \theta$ is positive then θ lies b / w
a. $\frac{-2 \lambda}{3}$ to $\frac{\lambda}{3}$
b. $\frac{-\lambda}{3}$ to $\frac{\lambda}{2}$
c. $0 t o \frac{\lambda}{3}$
d. $\frac{-\lambda}{2}$ to $\frac{\lambda}{2}$
18. $\operatorname{Sin} 10^{\circ}-\sin 110^{\circ}+\sin 130^{\circ}=$
a. 0
b. -1
c. 1
d. $1 / 2$
19. $\operatorname{Tan} 55^{\circ}-\tan 10^{\circ}-\tan 55^{\circ} \tan 10^{\circ}$
a. -1
b. 1
c. $-\sqrt{3}$
d. $1 / 2$
20. If $\sin x \cos y=1 / 4$ and $3 \tan x=4$ tany then $\sin (x-y)=$
[]
[
]
a. $\frac{1}{16}$
b. $\frac{7}{16}$
c. $3 / 4$
d. $\frac{3}{16}$

Physics

21. A body is thrown with velocity $\left(4 i+3 j() \mathrm{m} / \mathrm{s}\right.$ its maximum height is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)[$]
a. 2.5 m
b. 0.8 m
c. 0.9 m
d. 0.45 m
22. for a projectile the ratio of maximum height reached to square of flight time is[]
a. 5:4
b. 5:2
c. 5:1
d. 10:1
23.A body projected with velocity $30 \mathrm{~m} / \mathrm{s}$ reaches its maximum height in 15 sec . its range is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. 45 m
b. 108 m
c. $45 \sqrt{3}$
d. 54 m
23. A hose pipe lying on the ground shoots a stream of water upwards at an angle 60° to the horizontal at a speed of $20 \mathrm{~m} / \mathrm{s}$. the water strikes a wall 20 m a way at a height of $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. 14.64 m
b. 7.32 m
c. 29.28 m
d. none of these
25.A person throws a bottle into a dustbin at the some height as he is 2 m away at an angle of 45^{0}. The velocity of thrown is
a. g
b. \sqrt{g}
c. 2 g
d. $\sqrt{2} \mathrm{~g}$
26.a body is projected horizontally from the tap of tower with a velocity of $30 \mathrm{~m} / \mathrm{s}$. the velocity of the body 4 sec after projection is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
a. $40 \mathrm{~m} / \mathrm{s}$
b. $20 \mathrm{~m} / \mathrm{s}$
c. $50 \mathrm{~m} / \mathrm{s}$
d. $100 \mathrm{~m} / \mathrm{s}$
27.The height and width of each step of a staircase are 20 cm and A ball rolls off the top of a stair with horizontal velocity V and hits the fifth step. The magnitude of V is $[\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}$]
a. $1.5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
b. $3 \sqrt{5} \mathrm{~m} / \mathrm{s}$
c. $7.5 \mathrm{~m} / \mathrm{s}$
d. $1.5 \mathrm{~m} / \mathrm{s}$
28.Find the time of flight and range of the projectile along the inclined plane as shown in figure
a. $1.69 \mathrm{~s}, 39 \mathrm{~m}$
b. $0.69 \mathrm{~s}, 49 \mathrm{~m}$
c. $69 \mathrm{~s}, 49 \mathrm{~m}$
d. $2.99 \mathrm{~s}, 29 \mathrm{~m}$

29.The relation between coefficient of static friction as a angle of friction is
a. $\phi=\cot ^{-1}(\mathrm{~m})$
c $\phi=. \cos ^{-1}(\mathrm{~m})$
b. $\phi=\tan ^{-1}(1 / \mathrm{m})$
d. $\phi=\sin ^{-1}\left(\frac{m}{\sqrt{1+m^{2}}}\right)$
30.A vehicle of mass m is moving on a rough horizontal road with momentum P. if the coefficient of friction between the tyres and the road be $\mathrm{m} u$. then the stopping distance is
a. $\frac{p}{2 \mu m g}$
b. $\frac{p^{2}}{2 \mu m g}$
c. $\frac{p^{2}}{2 \mu m^{2} g}$
d. $\frac{p}{2 \mu m^{2} g}$
31.In the figure shown find acceleration of block and force of friction $\mathrm{F}=20 \sqrt{2} \mathrm{~N}[\quad]$
a. $1.2 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~N}$
b. $2 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~N}$
c. $2 / 3 \mathrm{~m} / \mathrm{s}^{2}, 8 \mathrm{~N}$
d. $1.5 \mathrm{~m} / \mathrm{s}^{2}, 8 \mathrm{~N}$

32.A wooden box is placed on the floor of lorry moving with an acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$. If $\mathrm{u}=0.6$. the acceleration of the box relative to lorry is $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. $1 \mathrm{~m} / \mathrm{s}^{2}$
b. $1.1 \mathrm{~m} / \mathrm{s}^{2}$
c. $1.2 \mathrm{~m} / \mathrm{s}^{2}$
d. 0
33.A block of weight 5 N is pressed against a vertical wall with a horizontal force of 12 N . if $u=0.6$. the frictional force acting on the body is
a. 8 N
b. 5 N
c. 7.2 N
d. 10 N
34.A brick of mass 2 kg just begins to slide down an inclined plane at an angle of 45° with horizontal. The force of friction is
a. $19.6 \cos 45^{\circ}$
b. $9.8 \sin 45^{\circ}$
c. $19.6 \sin 45^{\circ}$
d. $9.78 \cos 45^{\circ}$
35.A block slides down a rough inclined plane of inclination 45°. If coefficient of kinetic friction is 0.5 then acceleration of the sliding block is
a. $\frac{4.9}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$
b. $\frac{9.8}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$
c. $\frac{2.45}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$
d. $4.9 \mathrm{~m} / \mathrm{s}^{2}$

Chemistry

36. Measurable propertice of gases from the given are
37. Mass
38. volume
39. Pressure
40. Temperature
a. Only b,c
b. only b, c, d
c. only c, d
d. a, b, c, d
41. Volume of a gas at $0^{\circ} \mathrm{c}$ is doubled at \qquad ${ }^{\circ} \mathrm{C}$ temperature keeping pressure constant is
a. 273 K
b. $2^{\circ} \mathrm{C}$
c. $243{ }^{\circ} \mathrm{C}$
d. $546^{\circ} \mathrm{C}$
38.At constant temperature for a given mass of gas, pressure of the gas of volume "v" becomes three times
a. P
b. $\mathrm{P} / 4$
c. $\mathrm{P} / 3$
d. 3P
39.A sample of a given mass of gas at a constant temperature occupies $95 \mathrm{~cm}^{3}$ under a pressure of $9.962 \times 10^{4} \mathrm{NM}^{-2}$ At the same temperature its volume at a pressure of $10.13 \times 10^{4} \mathrm{NM}^{-2}$ is
a. $190 \mathrm{~cm}^{3}$
b. $93.42 \mathrm{~cm}^{3}$
c. $46.5 \mathrm{~cm}^{3}$
d. $47.5 \mathrm{~cm}^{3}$
42. Volume of 1 Litre of a gas is nearly equal to
a. $10 \mathrm{dm}^{3}$
b. $1 \mathrm{~m}^{3}$
c. $10^{3} \mathrm{~m}^{3}$
d. $10^{3} \mathrm{~cm}^{3}$
41.Ideal gas obeys
a. Boyles Law
b. Charte's Law
c. Avagadro's Law
d. All of the above
43. The density of a gas at STP is 2 g lLt. Its molecular weight is
a. 22.4
b. 56
c. 44.8
d. 30
43.A five litre flask contains 35 gm of $\mathrm{N}_{2} 3 \mathrm{~g}$ of H_{2} and 8 g of O_{2} at $27^{\circ} \mathrm{C}$. The total pressure exerted by the mixture of these gases is
a. 92.4 atm
b. 0.924 atm
c. 9.24 atm
d. 924 atm
44. The rate of diffusion of Nitrogen gas in a diffusion tube. The molecular weight of X is \qquad $\mathrm{g} \mathrm{mole}^{-1}$
a. 63
b. 36
c. 54
d. 45
45.180 ml of Hydro carbon having the molecular weight 16 diffuses in 1.5 min under similar conditions, The time taken by 120 ml of SO_{2} to diffuses is
a. 2 min
b. 1.5 min
c. 1 min
d. 1.75 min
45. Which of the following is independent of temperature of a gas
a. Density
b. Role of diffusion
c. vapourdensity
d. RMS velocity
47.According to Kinetic energy of Gases, The energy per mole of a gas is equal to
a. RT
b. 3RT
c. 0.5 RT
d. 1.5 RT
[]
46. The kinetic energy of m moles of an ideal gas is given by The expression
a. $\frac{3}{2} \mathrm{RT}$
b. $\frac{3}{2} \mathrm{nRT}$
c. $2 / 3 \mathrm{RT}$
d. $\frac{2}{3} \mathrm{nRT}$
47. The K .E of 4 moles of O_{2} at $47^{\circ} \mathrm{C}$ is \qquad
a. 1280 Cal
b. 2560 Cal
c. 1920 Cal
d. 3840 Cal
50.Average velocity of a gas is $13,820 \mathrm{~cm} / \mathrm{sec}$ Then the RMs Velocity is []
a. $14,996 \mathrm{~cm} / \mathrm{Sec}$
b. $12,250 \mathrm{~cm} / \mathrm{Sec}$
c. $10,250 \mathrm{~cm} / \mathrm{sec}$
d. $1225 \mathrm{~cm} / \mathrm{sec}$
