Dr.K.K.R GOWTHAM EDUCATIONAL INSTITUTIONS :: A.P \& T.S

Class: 9-NF3,NF4

Marks: 100
Sub: Maths, Physics, Chemistry
Time: $2^{1 / 2} \mathbf{~ H r s}$
$\approx \approx \approx$
I. Objective type questions :

Maths

1. The harmonic conjugate of $(4,-2)$ W.r.to $(2,-4)$ and $(7,1)$ is
a. $(-8,-14)$
b. 2,3
c. $(-2,-3)$
d. $(13,-5)$
2. The points $(0,-1)(-2,3)(6,7)(8,3)$ form
a. A parallelogram
b. a rectangle
c. a rhombus
d. a square
3. The orthocenter of the $\Delta^{\text {le }}$ formed by $\mathrm{A}(-1,0) \mathrm{B}(-2,3 / 4) \mathrm{C}(-3,-7 / 6)$
a. $(-3,-2)$
b. $(1,3)$
c. $(-1,2)$
d. none
4. Co ordinates of the point dividing the line segment joining $A(1,-2) B(4,7)$ internally in the ratio $1: 2$ are
a. $(1,2)$
b. $(2,1)$
c. $(4,3)$
d. $(7,2)$
5. The $1^{\text {st }}$ and $2^{\text {nd }}$ points of trisection of the join of $(-2,11)(-5,2)$ are
a. $(-3,0)(-4,6)$
b. $(-3,9)(-4,5)$
c. $(-3,8)(-4,5)$
d. $(-3,-4)(8,-5)$
6. Equation of the st line containing the point $(1,2)$ and $(3,4)$
a. $X+y+1=0$
b. $x-y+1=0$
c. $4 \mathrm{x}+\mathrm{y}=1$
d. $x+y=2$
7. The equation of sides of Δ^{le} are $\mathrm{x}+\mathrm{y}-5=0, x-y+1=0$ and $y-1=0$ then the circum centre is
a. $(2,1)$
b. $(1,7)$
c. $(2,-2)$
d. $(1,-2)$
8. If $6 x+8 y+7-k(2 x+4 y+5)=0$ is parallel to y axis then k
a. 1
b. 3
c. 2
d. 1
9. If P, Q are two points on the line $3 x+4 y+15=0$ such that $O p=O Q=9$ then the area $\Delta \mathrm{OPQ}$
a. $6 \sqrt{2}$
b. $9 \sqrt{2}$
c. $12 \sqrt{2}$
d. $18 \sqrt{2}$
10. Image of $(2,3)$ W.r.t to $(-1,3)$ is
a. $(3,-2)$
b. $(1,1)$
c. $(-4,3)$
d. $(3,7)$
11. $\left(\sqrt{1-\sin ^{2} 100}\right)\left(\sec 100^{\circ}\right)$
a. -1
b. 0
c. 1
d. 2
12. If $\tan 20^{\circ} \mathrm{R}$ then $\frac{\tan 250^{\circ}+\tan 340^{\circ}}{\tan 200^{\circ}-\tan 110^{\circ}}=$
a. $\frac{1+p}{1-p}$
b. $\frac{1-p}{1+p}$
c. 0
d. $\frac{1-p^{2}}{1+p^{2}}$
13. $\operatorname{Sec} \theta+\tan ^{2} \theta=5$ then $\sec \theta=$
a. 3
b. 2
c. -3
d. band c
14. The value of $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta$ is
a. 0
b. 1
b. 1
c. 2
d. 3
15. $a=\sec \theta-\tan \theta \quad b=\operatorname{cosec} \theta+\cot \theta$ then $a=$
a. $\frac{b+1}{b-1}$
b. $\frac{1+b}{1-b}$
c. $\frac{b-1}{b+1}$
d. $\frac{1-b}{1+b}$
16. $\mathrm{A}+\mathrm{B}=135^{\circ}$ then $(1+\cot \mathrm{A})(1+\cot \mathrm{B})=$
a. 1
b. 2
c. 3
c.
d. 4
17. If $\sqrt{3} \cos \theta-\sin \theta$ is positive then θ lies b / w
a. $\frac{-2 \lambda}{3} t o \frac{\lambda}{3}$
b. $\frac{-\lambda}{3}$ to $\frac{\lambda}{2}$
c. $0 t o \frac{\lambda}{3}$
d. $\frac{-\lambda}{2} t o \frac{\lambda}{2}$
18. $\operatorname{Sin} 10^{\circ}-\sin 110^{\circ}+\sin 130^{\circ}=$
a. 0
b. -1
c. 1
d. $1 / 2$
19. $\operatorname{Tan} 55^{\circ}-\tan 10^{\circ}-\tan 55^{\circ} \tan 10^{\circ}$
a. -1
b. 1
c. $-\sqrt{3}$
d. $1 / 2$
20. If $\sin x \cos y=1 / 4$ and $3 \tan x=4$ tany then $\sin (x-y)=$
a. $\frac{1}{16}$
b. $\frac{7}{16}$
c. $3 / 4$
d. $\frac{3}{16}$

Physics

21. If the coefficient of friction is $\sqrt{3}$. The angle of friction is
a. 30°
b. 60°
c. 45°
d. 37°
22. The relation between coefficient of static friction μ and angle of friction is
a. $\phi=\cot ^{-1}(\mu)$
b. $\phi=-\cot ^{-1}(\mu)$
c. 0
d. $\phi=\tan ^{-1}(\mu)$
23. A block is sliding on a rough horizontal surface. If the contact force on the block is T_{2} times the frictional force. The coefficient of friction is
a. 0.25
b. $\sqrt{2}$
c. 1
d $1 / \sqrt{2}$
24. A body of mass 400 g slides on a rough horizontal surface. If the frictional force is 3.0 N find the magnitude of the comtact force take ($\mathrm{g}=10 \mathrm{M} / \mathrm{s}^{2}$)
25. A block of mass m is kept on a horizontal table. If the static friction coefficient is μ, find the friction force acting on the block.
a. 0
b. $\mu \mathrm{mg}$
c. $2 \mu \mathrm{mg}$
d. $\mu \mathrm{mg} / 2$ coming to rest. μ is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. 0.4
b. 0.2
c. 0.1
d. 0.05
26. In the figure shown find acceleration of block and force of friction on it
a. $8 / 3 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~N}$
b. $2 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~N}$
c. $2 \mathrm{~m} / \mathrm{s}^{2}, 8 \mathrm{~N}$
d. $2 \mathrm{~m} / \mathrm{s}^{2}, 8 \mathrm{~N}$

27. Pulling force making an angle " θ " to the vertical is applied on a block of weight " W " placed on a horizontal table. If the angle of friction is " ϕ ". The magnitude of the force required to move the body is equal to
a. $\frac{W \cos \phi}{\cos (\theta-\phi)}$
b. $\frac{W \sin \phi}{\sin (\theta+\phi)}$
c. $\frac{W \tan \phi}{\sin (\theta-\phi)}$
d. $\frac{W \sin \phi}{g \tan (\theta-\phi)}$
28. A uniform chain of length 1 hangs partly from a table which is kept on equilibrium by friction. The maximum length that can stand without slipping is 1 less than coefficient of static friction
a. $\frac{1}{L+1}$
b. $\frac{1}{L}$
c. $\frac{1}{L-1}$
d. $\frac{L}{L-1}$
29. A uniform chain of linear density $2 \mathrm{~kg} \mathrm{gm}^{-1}$, lies at rest on a horizontal table of cofficeint of friction 0.8 with maximum length 32 cm hanging over the edge of the table total mass of the chain is[
a. 1.44 kg
b. 0.64 kg
c. 0.72 kg
d. 0.52 kg
30. A block of mass 1 kg lies on horizontal surface in the truck, The coefficient of friction between the block and the surface is 0.6 . If the acceleration of the truck is $5 \mathrm{~m} / \mathrm{s}^{2}$ the frictional force acting on the block is
a. 2 N
b. 5 N
c. 3 N
d. 6 N
31. A object takes 1 second to slide down a rough 45° inclined plane. The time taken to slide down a smooth 30° inclined plane having the same slope length is ($\mu=0.5$)
a. $\sqrt{2} \mathrm{sec}$
b. $\frac{1}{\sqrt{2}} \mathrm{sec}$
c. $\frac{1}{2 \sqrt{2}}$
d. $2^{-1 / 4} \mathrm{sec}$
32. A body takes n times as much time to slide down a 45° rough incline as it takes to slide down a smooth 45° incline, the coefficient of friction is
a. $\frac{1}{n^{2}}$
b. n^{2}
c. $1-\frac{1}{n^{2}}$
d. $\frac{1}{\sqrt{1-n^{2}}}$
33. The angle of friction between two surfaces is 37°. If $\cos 37^{\circ}=4 / 5$, coefficient of static friction between those two surfaces is
a. 3/4
b. $4 / 3$
c. $3 / 5$
d. $5 / 3$
34. A body slipping on a rough horizontal plane move with a acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ what is the coefficient of kinetic friction between the block and the plane?
a. 0.4
b. 0.5
c. 0.6
d. 0.7

Chemistry

36. Measurable propertice of gases from the given are
37. Mass
38. volume
39. Pressure
40. Temperature
a. Only b,c
b. only b, c, d
c. only c, d
d. a, b, c, d
41. Volume of a gas at $0^{\circ} \mathrm{c}$ is doubled at \qquad ${ }^{\circ} \mathrm{C}$ temperature keeping pressure constant is
a. 273 K
b. $2^{\circ} \mathrm{C}$
c. $243{ }^{\circ} \mathrm{C}$
d. $546^{\circ} \mathrm{C}$
38.At constant temperature for a given mass of gas, pressure of the gas of volume "v" becomes three times
a. P
b. $\mathrm{P} / 4$
c. $\mathrm{P} / 3$
d. 3 P
42. A sample of a given mass of gas at a constant temperature occupies $95 \mathrm{~cm}^{3}$ under a pressure of $9.962 \times 10^{4} \mathrm{NM}^{-2}$ At the same temperature its volume at a pressure of $10.13 \times 10^{4} \mathrm{NM}^{-2}$ is
a. $190 \mathrm{~cm}^{3}$
b. $93.42 \mathrm{~cm}^{3}$
c. $46.5 \mathrm{~cm}^{3}$
d. $47.5 \mathrm{~cm}^{3}$
40.Volume of 1 Litre of a gas is nearly equal to
a. $10 \mathrm{dm}^{3}$
b. $1 \mathrm{~m}^{3}$
c. $10^{3} \mathrm{~m}^{3}$
d. $10^{3} \mathrm{~cm}^{3}$
41.Ideal gas obeys
a. Boyles Law
b. Charte's Law
c. Avagadro's Law
d. All of the above
43. The density of a gas at STP is 2 g lLt. Its molecular weight is
a. 22.4
b. 56
c. 44.8
d. 30
43.A five litre flask contains 35 gm of $\mathrm{N}_{2} 3 \mathrm{~g}$ of H_{2} and 8 g of O_{2} at $27^{\circ} \mathrm{C}$. The total pressure exerted by the mixture of these gases is
a. 92.4 atm
b. 0.924 atm
c. 9.24 atm
d. 924 atm
44. The rate of diffusion of Nitrogen gas in a diffusion tube. The molecular weight of X is \qquad $\mathrm{g} \mathrm{mole}^{-1}$
a. 63
b. 36
c. 54
d. 45
45.180 ml of Hydro carbon having the molecular weight 16 diffuses in 1.5 min under similar conditions, The time taken by 120 ml of SO_{2} to diffuses is
a. 2 min
b. 1.5 min
c. 1 min
d. 1.75 min
45. Which of the following is independent of temperature of a gas
a. Density
b. Role of diffusion
c. vapourdensity
d. RMS velocity
47.According to Kinetic energy of Gases, The energy per mole of a gas is equal to
a. RT
b. 3RT
c. 0.5 RT
d. 1.5 RT
46. The kinetic energy of m moles of an ideal gas is given by The expression
a. $\frac{3}{2} \mathrm{RT}$
b. $\frac{3}{2} \mathrm{nRT}$
c. $2 / 3 \mathrm{RT}$
d. $\frac{2}{3} \mathrm{nRT}$
49.The K.E of 4 moles of O_{2} at $47^{\circ} \mathrm{C}$ is \qquad
a. 1280 Cal
b. 2560 Cal
c. 1920 Cal
d. 3840 Cal
50.Average velocity of a gas is $13,820 \mathrm{~cm} / \mathrm{sec}$ Then the RMs Velocity is []
a. $14,996 \mathrm{~cm} / \mathrm{Sec}$
b. $12,250 \mathrm{~cm} / \mathrm{Sec}$
c. $10,250 \mathrm{~cm} / \mathrm{sec}$
d. $1225 \mathrm{~cm} / \mathrm{sec}$
