D Class Sub:	r.K.K.R GOWTHAN :: 9-NF3,NF4 Maths, Physics, Chemistry	M EDUCATION	AL INSTITUT.	IONS :: A	A.P & 2 Marks: 1 Time: 2	Г.S 100 ¹ ⁄2 Hrs
:≈≈≈ •	Solutions	***************************************	~~~~~~~~~~~~	≈≈≈≈≈≈≈≈≈	$\approx\approx\approx\approx\approx$	≈≈≈≈ 100 M
		Maths				
1	. The harmonic conjugat	e of (4,-2) W.r.to (2	,-4) and (7,1) is		[]
	a. (-8, -14)	b. 2,3	c. (-2,-3)	d. (13,-5))	
2	. The points (0,-1) (-2,3)	(6,7) (8,3) form			[]
	a. A parallelogram	b. a rectangle	c. a rhombus	d. a squa	re	
3	The orthocenter of the Δ^{le} formed by A (-1,0) B (-2, ³ / ₄) C (-3, -7/6)					
	a. (-3,-2)	b. (1,3)	c. (-1,2)	d. none		
4	. Co ordinates of the point in the ratio 1:2 are	nt dividing the line s	segment joining A	(1,-2) B (4,	7) interr [nally]
	a. (1,2)	b. (2,1)	c. (4,3)	d. (7,2)		
5	. The 1^{st} and 2^{nd} points o	f trisection of the jo	in of (-2, 11) (-5, 2)) are	[]
	a. (-3, 0) (-4,6)	b. (-3,9) (-4,5)	c. (-3,8) (-4, 5)	d. (-3,-4)	(8,-5)	
6	Equation of the st line containing the point $(1,2)$ and $(3,4)$]
	a. X+y+1=0	b. x-y+1 =0	c.4x+y=1	d. x+y=2		
7	The equation of sides of Δ^{le} are x+y-5 =0, x-y+1=0 and y-1 =0 then the c					entre
	is				[]
	a. (2,1)	b. (1,7)	c. (2,-2)	d. (1,-2)		
8	. If 6x+8y+7-k (2x+4y+3	(5) = 0 is parallel to y	axis then k		[]
	a. 1	b. 3	c. 2	d . 1		
9	If P, Q are two points of ΔOPQ	n the line 3x+4y+15	5=0 such that Op =	OQ = 9 the	n the ar [ea]
	a. $6\sqrt{2}$	b. $9\sqrt{2}$	c. $12\sqrt{2}$	d. $18\sqrt{2}$		
1	0. Image of (2,3) W	V.r.t to (-1,3) is			[]
	a. (3,-2)	b. (1,1)	c. (-4, 3)	d.	(3,7)	
1	1. $\left(\sqrt{1-\sin^2 100}\right)$ (see	$c 100^{0}$)			[]
	a1	b. 0	c. 1	d. 2		
1	2. If $\tan 20^{\circ}$ R then	$\frac{\tan 250^{\circ} + \tan 340^{\circ}}{\tan 200^{\circ} - \tan 110^{\circ}} =$			[]
	a. $\frac{1+p}{1-p}$	b. $\frac{1-p}{1+p}$	c. 0	d. $\frac{1-p^2}{1+p^2}$		
1	3. $\operatorname{Sec}\theta + \tan^2\theta = 5$	then $\sec\theta =$			[]

a. 3 b. 2 c. -3 d. b and c
14. The value of
$$\sin^{6}\theta + \cos^{6}\theta + 3\sin^{2}\theta$$
 is []
a. 0 b. 1 c. 2 d. 3
15. a = sec θ - tan θ b = cosec θ +cot θ then a = []
a. $\frac{b+1}{b-1}$ b. $\frac{1+b}{1-b}$ c. $\frac{b-1}{b+1}$ d. $\frac{1-b}{1+b}$
16. A+B = 135⁰ then (1+cotA) (1+cotB)= []
a. 1 b. 2 c. 3 d. 4
17. If $\sqrt{3} \cos\theta - \sin\theta$ is positive then θ lies b/w []
a. $\frac{-2\lambda}{3} to \frac{\lambda}{3}$ b. $\frac{-\lambda}{3} to \frac{\lambda}{2}$ c. $0to \frac{\lambda}{3}$ d. $\frac{-\lambda}{2} to \frac{\lambda}{2}$
18. Sin 10⁰ - sin 110⁰ + sin 130⁰ = []
a. 0 b. -1 c. 1 d. $\frac{1}{2}$
19. Tan 55⁰ - tan 10⁰ - tan 55⁰ tan 10⁰ []
a. -1 b. 1 c. $-\sqrt{3}$ d. $\frac{1}{2}$
20. If sinx cosy = $\frac{1}{4}$ and 3 tan x =4 tany then sin (x-y) = []
a. $\frac{1}{16}$ b. $\frac{7}{16}$ c. $\frac{3}{4}$ d. $\frac{3}{16}$

Physics

21.		If the coefficient of friction is $\sqrt{3}$. The angle of friction is				[]
	a.	30°	b. 60°	c. 45°	d. 37°		
22.		The relation between coefficient of static friction μ and					

friction is

a. $\phi = \cot^{-1}(\mu)$ b. $\phi = -\cot^{-1}(\mu)$ c. 0 d. $\phi = \tan^{-1}(\mu)$

ſ

]

- 23. A block is sliding on a rough horizontal surface. If the contact force on the block is T_2 times the frictional force. The coefficient of friction is []
 - **a.** 0.25 b. $\sqrt{2}$ c. 1 d $\frac{1}{\sqrt{2}}$
- 24. A body of mass 400 g slides on a rough horizontal surface. If the frictional force is 3.0 N find the magnitude of the comtact force take ($g = 10 \text{ M/s}^2$) []
- 25. A block of mass m is kept on a horizontal table. If the static friction coefficient is μ , find the friction force acting on the block. []

a. 0 b. μ mg c. 2μ mg d. μ mg/2

- 26. A 100 kg box is slides on floor of a truck going at 72 km/h. if the box slides 100m before coming to rest. μ is (g = 10 m/s²) []
 - **a.** 0.4 b. 0.2 c. 0.1 d. 0.05
- 27. In the figure shown find acceleration of block and force of friction on it []
 - **a.** 8/3 m/s², 4N b. 2 m/s², 4N c. 2 m/s², 8N d. 2 m/s², 8N
- 28. Pulling force making an angle " θ " to the vertical is applied on a block of weight "W" placed on a horizontal table. If the angle of friction is " ϕ ". The magnitude of the force required to move the body is equal to []

a.
$$\frac{W\cos\phi}{\cos(\theta-\phi)}$$
 b. $\frac{W\sin\phi}{\sin(\theta+\phi)}$ **c.** $\frac{W\tan\phi}{\sin(\theta-\phi)}$ **d.** $\frac{W\sin\phi}{g\tan(\theta-\phi)}$

- 29. A uniform chain of length 1 hangs partly from a table which is kept on equilibrium by friction. The maximum length that can stand without slipping is 1 less than coefficient of static friction []
 - **a.** $\frac{1}{L+1}$ **b.** $\frac{1}{L}$ **c.** $\frac{1}{L-1}$ **d.** $\frac{L}{L-1}$

30. A uniform chain of linear density 2kg gm⁻¹, lies at rest on a horizontal table of cofficeint of friction 0.8 with maximum length 32 cm hanging over the edge of the table total mass of the chain is[

- 31. A block of mass 1 kg lies on horizontal surface in the truck, The coefficient of friction between the block and the surface is 0.6. If the acceleration of the truck is 5 m/s² the frictional force acting on the block is
 - a. 2N b. 5N c. 3N d. 6N
- 32. A object takes 1 second to slide down a rough 45° inclined plane. The time taken to slide down a smooth 30° inclined plane having the same slope length is ($\mu = 0.5$)

a.
$$\sqrt{2}$$
 sec b. $\frac{1}{\sqrt{2}}$ sec c. $\frac{1}{2\sqrt{2}}$ d. $2^{-1/4}$ sec

- 33. A body takes n times as much time to slide down a 45° rough incline as it takes to slide down a smooth 45° incline, the coefficient of friction is
 - a. $\frac{1}{n^2}$ b. n^2 c. $1 \frac{1}{n^2}$ d. $\frac{1}{\sqrt{1 n^2}}$
- 34. The angle of friction between two surfaces is 37° . If $\cos 37^{\circ} = 4/5$, coefficient of static friction between those two surfaces is []

35. A body slipping on a rough horizontal plane move with a acceleration of 4.0 m/s² what is the coefficient of kinetic friction between the block and the plane? []

Chemistry

36. Measurable propertice of gases from the given are ſ 1 1. Mass 2. volume 3. Pressure 4. Temperature a. Only b,c b. only b, c, d c. only c, d d. a, b, c, d 37.Volume of a gas at 0° c is doubled at °C temperature keeping pressure constant is ſ 1 b. 2°C c. 243°C d. 546°C a. 273 K 38.At constant temperature for a given mass of gas, pressure of the gas of volume "v" becomes three times L a P b P/4c P/3d 3P 39.A sample of a given mass of gas at a constant temperature occupies 95 cm³ under a pressure of 9.962 x 10^4 NM⁻² At the same temperature its volume at a pressure of $10.13 \times 10^4 \text{ NM}^{-2}$ is] L c. 46.5 cm^3 b. 93.42 cm^3 a. 190 cm^3 d. 47.5 cm^3 40. Volume of 1 Litre of a gas is nearly equal to ſ 1 a. $10 \, \text{dm}^3$ b. 1 m^3 c. 10^3m^3 d. 10^{3} cm³ 41.Ideal gas obeys ſ 1 b. Charte's Law c. Avagadro's Law d. All of the above a. Boyles Law 42. The density of a gas at STP is 2g lLt. Its molecular weight is ſ] a. 22.4 b. 56 c. 44.8 d. 30 43.A five litre flask contains 35 gm of N₂ 3g of H₂ and 8g of O₂ at 27°C. The total pressure exerted by the mixture of these gases is L a. 92.4 atm b. 0.924 atm c. 9.24 atm d. 924 atm 44. The rate of diffusion of Nitrogen gas in a diffusion tube. The molecular weight of X is g mole⁻¹ 1 ſ a. 63 b. 36 c. 54 d 45 45.180ml of Hydro carbon having the molecular weight 16 diffuses in 1.5 min under similar conditions. The time taken by 120ml of SO₂ to diffuses is Γ a. 2 min b. 1.5 min c. 1 min d. 1.75 min 46. Which of the following is independent of temperature of a gas ſ] b. Role of diffusion c. vapourdensity d. RMS velocity a. Density 47. According to Kinetic energy of Gases, The energy per mole of a gas is equal to b 3RT a RT c. 0.5 RT d 1.5 RT 1 Γ 48. The kinetic energy of m moles of an ideal gas is given by The expression a. $\frac{3}{2}$ RT b. $\frac{3}{2}$ nRT d. $\frac{2}{2}$ nRT c. 2/3 RT

49. The K.E of 4 moles of O_2 at 47°C is						[]
	a.	1280 Cal	b. 2560Cal	c. 1920 Cal	d. 3840 Cal		
50. Average velocity of a gas is 13,820 cm/sec Then the RMs Velocity is					is	[]
	a.	14, 996 cm/Sec	b. 12,250 cm/Sec	c. 10, 250 cm/	sec d. 122	5 cm/se	c