Class: 9 Subject	Dr.K.K.R G -A1, A2 : MATHS, PHYSICS, CHEMIST	FOWTHAM (I	E.M) HIGH S	CHOOL :: AP	P & T Marks Time:	S 5 : 100M 1½ hr
***** Name o	**************************************	**************************************	**************************************	******	*******	*****
 I.	Choose the corre	ect answer			50x	2=100M
1.	$\lim_{x \to \infty} \left[\left(\frac{n}{n+1} \right)^{\alpha} + \sin \left(\frac{n}{n+1} \right)^{\alpha} \right]$	$\left[\frac{1}{n}\right]^n$ (when $\alpha \in \mathbb{Q}$) is	equal to		[]
	a. $e^{-\alpha}$	bα	c. $e^{1-\alpha}$	d. $e^{1+\alpha}$		
2.	If $f(x) = \begin{cases} x^n \sin\left(\frac{1}{x^2}\right) \\ 0 \end{cases}$), $x \neq 0$, $(n \in I)$, then, x = 0			[]
	a. $\lim_{x\to 0} f(x)$ exists for	or n>1	b. $\lim_{x\to 0} f(x)$ exists f	for n<0		
	c. $\lim_{x\to 0} f(x)$ does not	exist for any value of	n d. $\lim_{x\to 0} f(x)$ cannot	be determined		
3.	$\lim_{x \to 1} \frac{(1-x)(1-x^2)}{\left\{ (1-x)(1-x^2) \right\}}$	$\frac{\dots(1-x^{2n})}{\dots(1-x^{n})\}^{2}}, n \in \mathbb{N}$			[]
	a. 2n P _n	b. ${}^{2n}C_n$	c. (2n)!	d. none of these		
4.	$f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n}}{(x-1)^{2n}} + (x-1)^{2n$	$\frac{-1}{-1}$ is discontinuous at			[]
	a. $x=0$ only	b. $x=2$ only	c. $x=0$ and 2	d. none of these		
5.	If $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$	$\overline{\overline{2}}$, then f(x) is			[]
	a. continuous on (-1	, 1) and differentiable	on (-1,1)			
	b. continuous on (-1, 1) and differentiable on (-1,0) \cup (0,1)					
	c. continuous and di	ifferentiable on (-1,1)	d. none of t	hese		
6.	If $\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} \right)^{2x}$	$e^{2} = e^{2}$, then the value o	f a and b are		[]
	a. $a \in R, b \in R$	b. a = 1 and b = 2	$c. a \in R, b = 2$	d. $a = 1, b \in R$		
7.	The integer 'n' for v	which $\lim_{x \to 0} \frac{(\cos x - 1)(\cos x - 1)(\cos x - 1)}{x^n}$	$\frac{\cos x - e^x}{\cos x}$ is a finite not	on zero number is	[]
	a. 1	b. 2	c. 3	d. 4		
8.	$\lim_{n\to\infty}\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$	$\left(\frac{x}{4}\right)\cos\left(\frac{x}{8}\right)$ c	$\cos\left(\frac{x}{2^n}\right) =$		[]
	a. 1	b. $\frac{\sin x}{x}$	c. $\frac{x}{\sin x}$	d. 2		

9. If
$$f(x) = \frac{1 - \cos(1 - \cos x)}{x^4}$$
 is continuous at $x = 0$ then $f(0) =$
a. $\frac{1}{2}$ b. $\frac{1}{4}$ c. $\frac{1}{6}$ d. $\frac{1}{8}$
10. If $f(x) = \frac{x(e^4 - e^{-1})}{e^4 + e^{1/4}}$, $x \neq 0$ is continuous at $x = 0$ then $f(0) =$ []
a. 1 b. 2 c. 0 d. 3
11. $f(x) = \begin{cases} -2\sin x & ifx \leq -\frac{\pi}{2} \\ a\sin x + b & if -\frac{\pi}{2} < x < \frac{\pi}{2} and(fx)$ is continuous at every where then $(a,b) =$ []]
a. (11) b. (-1,1) c. (1,-1) d. (-1,-1)
12. If $x^7 = \log x \ln \frac{dy}{dx}$ at $x = e$ is []]
a. 0 b. 1 c. c d. $\frac{1}{e}$
13. If $\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right) \cos\left(\frac{x}{2^2}\right) \dots$ to $\infty = \frac{\sin x}{x}$ then $\frac{1}{2^2} \sec^2\left(\frac{x}{2}\right) + \frac{1}{2^4} \sec^2\left(\frac{x}{2^2}\right) + \dots$
a. $\cose^2 x \cdot \frac{1}{x}$ b. $\csce^2 x \cdot \frac{1}{x^2}$ c. $\csce^2 x \cdot \frac{1}{x}$ d. $\frac{-1}{x^2}$ []]
14. If $x^7 + y^8 = u^8$ then $\frac{dy}{dx} =$ []]
a. $-\left(\frac{yx^{r/4} + y^{r/4}y^{r/4}}{x^{r/4}}\right) b. \frac{yx^{r/4} + y^{r/4}\log y}{x^{r/4}\log x + x, y^{r/4}}$ c. xy d. $\frac{x}{y}$
15. Water is being poured into the inverted conical vessel at the rate of 1.5 cubic meter per minute. Its depth is always equal to twice its radius. The level of water is rising at the rate of $\frac{3}{8\pi}$ meter per minute when its depth is always equal to twice its radius. The level of water is rising at the rate of $\frac{3}{8\pi}$ meter per minute when its depth is always equal to twice its radius. The level of water is rising at the rate of $\frac{3}{8\pi}$ meter per minute when its depth is always equal to twice its radius. The level of water is rising at the rate of $\frac{3}{8\pi}$ meter per minute when its depth is a limit b. $2mt$ c. $3mt$ d. $4mt$
16. A source of light is hung a mt directly above a straight horizontal path on which a by boy 'b' metre in height is walking. How fast is the shadow lengthening when he is walking away from the light at the rate of 'c' mt/min? []]

17.	An inverted cone ha	An inverted cone has a depth of 10 cms and a base of radius 5cms. Water is poured into it at the rate of						
	1.5 cc/sec. The rate at which water is raising when the depth is 4 cms is]		
	a. 0.5 cms/sec	b. $\frac{5}{\pi}$ cms/sec	c. $\frac{3}{8}\pi$ cms/sec	d cms/s	sec			
18.	If the tangent at the point (at ² , at ³) on the curve $ay^2 = x^3$ meets the curve again at Q, then Q =							
	a. $\left(\frac{at^2}{4}, \frac{-at^3}{8}\right)$	b. $\left(\frac{at}{4}, 8at\right)$	c. $\left(\frac{at}{2}, 2at^2\right)$	d. $\left(\frac{at}{2}, at^2\right)$	[]		
19.	If the curves $\frac{x^2}{a^2} + \frac{y}{b}$	$\frac{y^2}{r^2} = 1$ and $\frac{x^2}{l^2} - \frac{y^2}{m^2} =$	1 cut each other orthog	conally then	[]		
	a. $a^2 + b^2 = l^2 + m^2$	b. $a^2 - b^2 = 1$	$a^2 - m^2$ c. $a^2 - b^2 = 1$	$l^2 + m^2$ d. $a^2 + b^2$	$l^{2} = l^{2} - m^{2}$			
20.	The equation of the	The equation of the straight lines which are both tangent and normal to the curve $27x^2 = 4y^3$ are						
	a. x= $\pm \sqrt{2}$ (y-2)	b. $x = \pm \sqrt{2}$	3 (y-2)					
	c. x= $\pm \sqrt{2}$ (y-3)	d. x= $\pm $	3 (y-3)		[]		
			PHYSICS					
21.	When light passes through a boundary , refraction will not take place if				[]		
	a) light is incident n	a) light is incident normally on the boundary						
	b) the index of refraction of the two media is same							
	c) angle of incidencd) all the above	e is less than angle o	f refraction and angle of	of incidence is great	er than critio	cal angle.		
22.	Statement I: Due to refraction of light stars appears twinkling in the Sky.]		
	Statement II : Due to reflection of light stars appears twinkling in the Sky.							
	a) Both Statements are true b) Both Statements are false							
	c) Statement - I is true, Statement - II is false.							
	d) Statement - I is false, Statement - II is true.							
23.	A plane glass slab is kept over various coloured letters ; the letter which appears least raised is :							
	a) blue b) vi	olet c) g	green d) r	ed	[]		
24.	The refractive index a distance 'd' in air a) 4s	a of glass is 3/2. The t is 4s. The time taken b) 6s	time taken by a monocl by the light ray to trav c) 8/3s d) 3	hromatic light rays t el the same distance 8s	to travel to in glass is []		
25.	When monochromatic light is refracted from a medium of refractive index 1.72 in to vaccum,							
	its wave length				[J		
	a) decreases by 700	1.1.1	nonacco by 72 0/					

26. A ray of light is traveling from medium A into rarer medium B. The angle of incidence is 45° and the angle of deviation is 15°. The refractive index of medium A w.r.t B is

a.
$$\sqrt{\frac{3}{2}}$$
 b. $\frac{\sqrt{3}}{2}$ c. $\frac{1}{\sqrt{2}}$ d. $\sqrt{\frac{2}{3}}$

27. A ray of light entering from air to glass (refractive index 1.5) is partly reflected and partly refracted. If the incident and the reflected rays are at right angles to each other, the angle of refraction is

a)
$$\sin^{-1}(\sqrt{\frac{2}{13}})$$
 b) $\sin^{-1}(\frac{\sqrt{2}}{3})$ c) $\sin^{-1}(\frac{2}{\sqrt{13}})$ d) $\sin^{-1}(\frac{2}{\sqrt{3}})$ []

28. A glass cube of edge 1 cm and $\mu = 1.5$ has a small spot at the centre. The area of the cube face that must be covered to prevent the spot from being seen is []

a)
$$\left(\frac{\pi}{5}\right)cm^2$$
 b) $5\pi \text{ cm}^2$ c) $\left(\frac{\pi}{\sqrt{5}}\right)cm^2$ d) $\sqrt{5\pi} cm^2$

When light ray passes rarer medium (μ₁) into denser medium (μ₂), the object distance (u) and image distance (v) then the radius of curvature (R) of the concave refracting surface

a)
$$\frac{(\mu_2 - \mu_1)uv}{\mu u_2 - v\mu_1}$$
 b) $\frac{\mu_2 u - v\mu_1}{(\mu_2 - \mu_1)uv}$ c) $\frac{(\mu_1 - \mu_2)uv}{v\mu_1 - u\mu_2}$ d) $\frac{vu_1 - u\mu_2}{(\mu_1 - \mu_2)uv}$

- 30. The image for the converging beam after refraction through the curved surface is formed at
 - a) x = 40 cm b) $x = \frac{40}{3}$ cm []

c)
$$x = -\frac{40}{3}cm$$
 d) $x = \frac{180}{7}cm$

- 31. Locate the image of the point object O in the situation shown in figure. The point C denotes the centre of curvature of the separating surface.
 - a) 10cm b)20cm []
 - c) 30cm d) 15cm
- 32. A ray of light is incident on one of the faces with an angle 50° with the surface. The refracting angle of the prism is 60° . The emergent ray is deviated through an angle 42° . The angle made by the emergent ray with the surface is a) 28° b) 32° c) 42° d) 54°
- 33. The angle of a prism is A and one of its refracting surfaces is silvered. Light rays falling at an angle of incidence 2A on the first surface return back through the same path after suffering reflection at the silvered surface. The refractive index of the prism material is

 a) 2 sin A
 b) 2 cos A
 c) 2 cot A
 d) 2 tan A
- 34. One face of the glass prism is silver polished. A light ray falls at an angle of 45° on the other face. After reflection it is subsequently reflected from the silvered face and then retraces its path. The refracting angle of the prism is 30° . The refractive index of the prism is []

a)
$$\frac{3}{2}$$
 b) $\sqrt{2}$ c) $\frac{\sqrt{3}}{2}$ d) $\sqrt{3}$

35. For a small angled prism, angle of prism *A*, the angle of minimum deviation (δ) varies with the refractive index of the prism as shown in the graph $\beta \uparrow \beta$

a) Point *P* corresponds to $\mu = 1$

b) Slope of the line
$$PQ = A/2$$

c) Slope = A d) Both a and c are correct

ſ

1

	CHEMISTRY					
36.	The conjugate acid of HPO_4^{-2} is	[]			
	a. H_2PO^{-1} b. PO_4^{-3} c. H_3PO_4 d. H_2	₃ PO ₃				
37.	Highest p ^{-H} value stands for	[]			
	a. An acidic solution b. A basic solution c. A slightly basic s	utral solution				
38.	The pH of a 0.005 M aqueous solution of sulphuric acid is appro	[]			
	a. 0.005 b. 2 c. 1	d. 0.01				
39.	0.2 M solution of formic acid is 3.2% ionised its ionisation const	[]			
	a. $9.6 \ge 10^{-3}$ b. $2.1 \ge 10^{-4}$ c. $1.25 \ge 10^{-6}$	d. 4.8 x 10 ⁻⁵				
40.	20 ml of a 0.1 N HCl is mixed with 20 ml of a .1 N KOH. The pl	would be				
	a. zero b. 7 c. 2	d. 9	[]		
41.	Methyl orange gives red colour in	Methyl orange gives red colour in				
	a. KOH solution b. HCl solution c. Na	a ₂ CO ₃ solution	d. Nacl solut	tion		
42.	Which of the following salt undergo hydrolysis	[]			
	a. CH ₃ COOK b. NaNO ₃ c. KCl	d. K ₂ So ₄				
43.	The solubility of A_2B_3 is x mol dm ⁻³ its Ksp is	[]			
	a. $6x^4$ b. $64x^4$ c. $36x^5$	d. 108	$3 x^5$			
44.	n – propylamine and isopropyl amine are example of		[]		
	a. position isomerism b. chain isomerism c. tanstomerism	al isomerism				
45.	The number of structural isomers with formula $C_4H_{11}N$		[]		
	a. 2 b. 8 c. 6	d. 5				
46.	The dihedral angle between two methyl groups in cauche form of	of n – butane	[]		
	a. 120° b. 60° c. 180°	d. 0°				
47.	Which of the following does not show geometrical isomerism	[]			
	a. $1,2$ – dichloro – 1 – pentene b. $1,3$ – dichloro – 2	2 – pentene				
	c. 1, $1 - dichloro - 1 - pentene$ d. 1, $4 - dichloro - 2$					
48.	The number of optically active forms of the compound CH ₃ CHB	5 []			
	a. 0 b. 1 c. 3	d. 4				
49.	Which of the following may have a meso isomer		ſ	1		
	a. 2 – chlorobutane b. 2, 3 – dichlorobutane	-	-			
	c. 2, 3 – dichloropentane d. 2 – hydroxypropanoic acid					
50	Optically active among the following is	ſ	1			
50.	a. Meso tartaric acid b. dl – tartaric acid	L	L			
	c. Meso -2 , 3 – butane diol d Ervthro -2 , 3 – dihydrox	v butanoic acid				