VII Class

FACTORS AND MULTIPLES

1. The exact divisor of a number is called a \qquad of the number.
2. In $3 \times 7=21,21$ is called a \qquad
3. Write all the factors of 36 \qquad
4. is neither prime nor composite.
5. The numbers which have exactly two factors are called \qquad numbers.
6. The numbers which have more than 2 factors are called \qquad numbers.
7. $2,3,5,7 \ldots \ldots$ are called \qquad numbers.
8. $4,6,8,9,10, \ldots$. are \qquad numbers.
9. is the smallest prime number.
10. ___ is the only even prime number.
11. ___ is the smallest composite number.
12. In $2 \times 21=42,2$ and 21 are \qquad of 42 .
13. 3 and 5 are factors of 45 , then \qquad is also a factor of 45 .
14. The smallest odd composite number is \qquad
15. Encircle the prime number of the folllowing.
$\begin{array}{lllll}52 & 63 & 41 & 28 & 35\end{array}$
16. A number which is divisible by 2 is called an \qquad number.
17. A number which is not divisible by 2 is called an \qquad number.
18. Encircle the odd number of the following
$\begin{array}{lllll}48 & 36 & 52 & 61 & 100\end{array}$
19. Write any number that have exactly 3 factors \qquad
20. Write 56 as a sum of two odd primes.
21. The numbers which have only ' 1 ' as their common factor are called \qquad
22. Two prime numbers which differ by '2' are called \qquad
23. The number which is not divisible by 4 is \qquad
a) 512
b) 12159
c) 4096
d) 6540
24. The number which is divisible by 3 is
a) 126
b) 2050
c) 28561
d) 4067
25. If a number is divisible by 3 , then it will be divisible by 9 . Also (True / false) . Support your answer \qquad .
26. Expressing a given number as a product of all prime factors is called \qquad
27. Prime factorization of 60 is \qquad
28. The greatest among all the common factors of 2 or more numbers is called \qquad
29. H.C.F. of 27 and 81 is \qquad
30. The H.C.F. of any two consecutive numbers is \qquad
31. The H.C.F. of two consecutive even numbers is 2. (True / false)
32. The smallest among all the common multiples of 2 or more numbers is called \qquad
33. L.C.M. of 24 and 40 is \qquad
34. The L.C.M. of two co-prime numbers is their \qquad
35. L.C.M. of 9 and 5 is \qquad
36. Every number is a \qquad as well as a \qquad of itself.
37. The product of two numbers is 3000 . If the H.C.F. of these numbers is 10 , then $\mathrm{LCM}=$
38. Is the product of 3 numbers always equal to the product of their HCF and LCM ? Give reason \qquad
