21. Given that radius of conical tent
r $=7 \mathrm{~m}$
and height $\mathrm{h}=10 \mathrm{~m}$
Let ' l ' be slant height of conical tent
then W.K.T $l^{2}=r^{2}+h^{2}$

$$
\begin{aligned}
& =7^{2}+10^{2} \\
& =49+100 \\
& =149
\end{aligned}
$$

$$
\begin{aligned}
& l^{2}=149 \\
& \Rightarrow l=\sqrt{149}=12.2 \mathrm{~m}
\end{aligned}
$$

Now surface area of tent

$$
\begin{aligned}
& =\pi r l \\
& =\frac{22}{7} \times 7 \times 12.2 \\
& =268.4 \mathrm{~m}^{2}
\end{aligned}
$$

Given that width of canvas $=2 \mathrm{~m}$
Length of canvas used $=\frac{\text { Area }}{\text { Width }}$

$$
\begin{aligned}
& =\frac{268.4}{2} \\
& =134.2 \mathrm{~m}
\end{aligned}
$$

22. Given that the diameter of oil drum $=2 \mathrm{~m}$
$\Rightarrow 2 \mathrm{r}=2$
$\Rightarrow r=1 \mathrm{~m}$
and height $\mathrm{h}=7 \mathrm{~m}$
Total surface Area of cylindrical drum $=2 \pi r(h+r)$
$=2 \times \frac{22}{7} \times 1(7+1)$
$=2 \times \frac{22}{7} \times 8$
$=\frac{352}{7}$
$=50.28 \mathrm{~m}^{2}$
Painting charges per $1 \mathrm{~m}^{2}=$ Rs 3
Cost of painting of 10 drums

$$
\begin{aligned}
& =10 \times 50.28 \times 3 \\
& =\text { Rs } 1508.40
\end{aligned}
$$

23. Let r be the common radius of a sphere, a cone and cylinder

Height of sphere $=$ its diameter $=2 r$
Then, the height of the cone = height of cylinder = height of sphere
Let l be the slant height of cone $=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& \quad=\sqrt{r^{2}+(2 r)^{2}} \\
& =\sqrt{5} r
\end{aligned}
$$

$\mathrm{S}_{1}=$ curved surface area of sphere $=4 \pi r^{2}$
$\mathrm{S}_{2}=$ curved surface area of cylinder, $2 \pi r h=2 \pi r \times 2 r$

$$
=4 \pi r^{2}
$$

$\mathrm{S}_{3}=$ curved surface area of cone $=\pi r l$

$$
=\pi r \times \sqrt{5} r
$$

$$
=\sqrt{5} \pi r^{2}
$$

Ratio of curved surface area as

$$
\begin{aligned}
& \therefore S_{1}: S_{2}: S_{3}=4 \pi r^{2}: 4 \pi r^{2}: \sqrt{5} \pi r^{2} \\
&=4: 4: \sqrt{5}
\end{aligned}
$$

24. Given that Radius of Jocker cap (cone) $\mathrm{r}=7 \mathrm{~cm}$
and height $\mathrm{h}=24 \mathrm{~cm}$
W.K.T $l=\sqrt{r^{2}+h^{2}}$
$=\sqrt{49+576}$
$=\sqrt{625}$
$=25$
Lateral surface of one cap $=\pi r l$
$=\frac{22}{7} \times 7 \times 25$

$=550 \mathrm{~cm}^{2}$
25. Diameter of Heap (conical) $=12 \mathrm{~m}$
$2 r=12$
$r=6 \mathrm{~m}$
Height h = 8 m
Volume of cone $v=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times 6^{2} \times 8$
$=\frac{1}{3} \times \frac{22}{7} \times 36 \times 8$
$=\frac{2112}{7}$
$=301.71 \mathrm{~cm}^{3}$

ii) let slant height $=l \mathrm{~cm}$
W.K.T $l^{2}=r^{2}+h^{2}$

$$
\begin{aligned}
& =6^{2}+8^{2} \\
& =36+64 \\
& =100 \\
& l^{2}=100 \Rightarrow l=\sqrt{100} \Rightarrow l=10 \mathrm{~cm}
\end{aligned}
$$

The canvas cloth is required to cover the heap $=\pi r l$

$$
\begin{aligned}
& =3.14 \times 6 \times 10 \\
& =188.40 \mathrm{~cm}^{2}
\end{aligned}
$$

26. Radius of cone $=\frac{1}{2}$ edge of cube

$$
\begin{aligned}
& =\frac{1}{2} \times 7 \\
& =\frac{7}{2} c m
\end{aligned}
$$

Height of cone = edge of cube $=7 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7
$$

$$
\begin{aligned}
& =\frac{1}{3} \times 22 \times \frac{7}{2} \times \frac{7}{2} \\
& =\frac{539}{6} \\
& =89.833 \mathrm{~cm}^{3}
\end{aligned}
$$

27. Given that radius of sphere $\mathrm{r}=4.2 \mathrm{~cm}$

Volume $v_{1}=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \pi \times(4.2)^{3} \\
& =\frac{4}{3} \times \pi \times 4.2 \times 4.2 \times 4.2 \\
& =4 \pi \times 1.4 \times 4.2 \times 4.2 \mathrm{~cm}^{3}
\end{aligned}
$$

also given radius of cylinder $\mathrm{r}=6 \mathrm{~cm}$
Let the height of cylinder $=\mathrm{hcm}$
Volume of cylinder $v_{2}=\pi r^{2} h$

$$
\begin{aligned}
& =\pi \times 6^{2} \times h \\
& =\pi \times 6 \times 6 \times h \mathrm{~cm}^{3}
\end{aligned}
$$

From data $v_{1}=v_{2}$
$\Rightarrow 4 \pi \times 1.4 \times 4.2 \times 4.2=\pi \times 6 \times 6 \times h$
$\Rightarrow 4 \times 1.4 \times 0.7 \times 0.7=h$
$\Rightarrow 4 \times 0.686=h$
$\Rightarrow 2.744=h$
\therefore Height h $=2.744 \mathrm{~cm}$
28. Given that Radii of 3 spheres be $r_{1}=6 \mathrm{~cm} \quad r_{2}=8 \mathrm{~cm} \quad r_{3}=10 \mathrm{~cm}$

Volumes of spheres $v_{1}=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi \times 6^{3} \mathrm{~cm}^{3} \\
& v_{2}=\frac{4}{3} \pi \times 8^{3} \mathrm{~cm}^{3} \\
& v_{3}=\frac{4}{3} \pi \times 10^{3} \mathrm{~cm}^{3}
\end{aligned}
$$

Total volume of 3 spheres $v^{1}=\frac{4}{3} \pi \times 6^{3}+\frac{4}{3} \pi \times 8^{3}+\frac{4}{3} \pi \times 10^{3}$
$=\frac{4}{3} \pi\left[6^{3}+8^{3}+10^{3}\right]$
Let radius of resulting sphere $=r$
Volume $v=\frac{4}{3} \pi r^{3} \mathrm{~cm}^{3}$ \qquad
From data $v^{1}=r \quad$ (1) $=(2)$

$$
\begin{aligned}
& =\frac{4}{3} \pi\left[6^{3}+8^{3}+10^{3}\right]=\frac{4}{3} \pi r^{3} \\
& \Rightarrow 2^{3} \times 3^{3}+2^{3} \times 4^{3}+2^{3} \times 5^{3}=r^{3} \\
& \Rightarrow 2^{3}\left[3^{3}+4^{3}+5^{3}\right]=r^{3} \\
& \Rightarrow 2^{3}[216]=r^{3} \\
& \Rightarrow 2^{3} \times 6^{3}=r^{3}
\end{aligned}
$$

$\Rightarrow 12^{3}=r^{3}$
$\Rightarrow r=12 \mathrm{~cm}$
29. Cylinder width of the capsule $=5 \mathrm{~mm}$

Radius of cylinder $r=\frac{5}{2}=2.5 \mathrm{~mm}$
Height of cylinder $=14 \mathrm{~mm}$
Surface Area of cylinder $s_{1}=2 \pi r h$

$$
\begin{aligned}
& =2 \pi \times 2.5 \times 14 \\
& =70 \pi \mathrm{~mm}^{2}
\end{aligned}
$$

Hemisphere
Radius of Hemisphere $r=\frac{5}{2}=2.5 \mathrm{~mm}$
Curved surface area of hemisphere $s_{2}=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \pi(2.5)^{2} \\
& =12.5 \pi \mathrm{~mm}^{2}
\end{aligned}
$$

Surface Area of capsule $=s_{1}+2 \times s_{2}$

$$
=70 \pi+2 \times 12.5 \pi
$$

$$
=\pi(70+25)
$$

$$
=95 \pi
$$

$$
=95 \times 3.14
$$

$$
=298.3 \mathrm{~mm}^{2}
$$

(OR)
Let side of a cube $=\mathrm{a}$ cm
Given that volume $=64 \mathrm{~cm}^{3}$
$\Rightarrow a^{3}=4^{3}$
$\Rightarrow a=4 \mathrm{~cm}$
Length of cuboid $l=2 \mathrm{a}$

$$
\begin{aligned}
& =2 \times 4 \\
& =8 \mathrm{~cm}
\end{aligned}
$$

breadth $\mathrm{b}=\mathrm{a}=4 \mathrm{~cm}$
height $\mathrm{h}=\mathrm{a}=4 \mathrm{~cm}$
Total surface area of resulting cuboid $=2(l h+b h+l b)$

$$
\begin{aligned}
& =2(2 a \times a+a \times a+2 a \times a) \\
& =2\left(2 a^{2}+a^{2}+2 a^{2}\right) \\
& =2 \times 5 a^{2} \\
& =10 a^{2} \\
& =10 \times 4^{2} \\
& =10 \times 16 \\
& =160 \mathrm{~cm}^{2}
\end{aligned}
$$

30. Hemisphere

Given common diameter $=4.2$
$2 r=4.2$
$r=2.1 \mathrm{~cm}$
Let height of conical portion $h_{1}=7 \mathrm{~cm}$
Height of cylindrical portion $\mathrm{h}_{2}=12 \mathrm{~cm}$
Hemisphere

Volume of hemisphere $v_{1}=\frac{4}{3} \pi r^{3}$

$$
=\frac{2}{3} \pi \times(2.1)^{3} \mathrm{~cm}^{3}
$$

Cylinder
Volume of cylinder $v_{2}=\pi r^{2} h_{2}$

$$
\begin{aligned}
& =\pi \times(2.1)^{2} \times 12 \\
& =12 \pi(2.1)^{2} \mathrm{~cm}^{3}
\end{aligned}
$$

Cone

Volume of cone $v_{3}=\frac{1}{3} \pi r^{2} h_{1}$

$$
=\frac{1}{3} \pi \times(2.1)^{2} \times 7 \mathrm{~cm}^{3}
$$

Volume of the solid toy $=v_{1}+v_{2}+v_{3}$

$$
=\frac{2}{3} \pi(2.1)^{3}+12 \pi(2.1)^{2}+\frac{1}{3} \pi(2.1)^{2} \times 7
$$

$$
=(2.1)^{2} \pi\left[\frac{2}{3} \times 2.1+12+\frac{1}{3} \times 7\right]
$$

$$
=2.1 \times 2.1 \times \frac{22}{7}[1.4+2+2.33]
$$

$$
=0.3 \times 2.1 \times 22[17.13]
$$

$$
=13.86 \times 15.73
$$

$$
=218.0178 \mathrm{~cm}^{3}
$$

(OR)

Volume of Wax in the rectangular solid (cuboid) $v_{1}=l b h$

$$
=66 \times 42 \times 21 \mathrm{~cm}^{3}
$$

Radius of cylinder candle $r=\frac{4.2}{2}=2.1 \mathrm{~cm}$
Height of cylinder candle $\mathrm{h}=2.8 \mathrm{~cm}$
Volume of candle $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times(2.1)^{2} \times 2.8 \\
& =\frac{22}{7} \times 2.1 \times 2.1 \times 2.8 \\
& =22 \times 2.1 \times 2.1 \times 2.1 \times 0.4 \mathrm{~cm}^{3}
\end{aligned}
$$

Let number of candles $=\mathrm{n}$
Volume of n candles $v_{2}=n \times 22 \times 2.1 \times 2.1 \times 0.4 \mathrm{~cm}^{3}$
From data $v_{1}=v_{2}$

$$
\begin{aligned}
& \Rightarrow 66 \times 42 \times 21=n \times 22 \times \frac{21}{10} \times \frac{21}{10} \times \frac{4}{10} \\
& \Rightarrow 6=n \times \frac{4^{2}}{1000} \\
& \Rightarrow 2 n=3000 \\
& n=1500
\end{aligned}
$$

31. Cube

Given that side of lead cube, $\mathrm{a}=44 \mathrm{~cm}$
Volume of lead cube $v_{1}=a^{3}$

$$
=(44)^{3} \mathrm{~cm}^{3}
$$

Spherical ball (sphere)
Diameter of spherical ball $=4 \mathrm{~cm}$

$$
\begin{aligned}
& 2 r=4 \\
& r=2 c m
\end{aligned}
$$

Volume of spherical ball $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times 2^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times 8 \mathrm{~cm}^{3}
\end{aligned}
$$

Let number of balls $=n$
Volume of n balls $v_{2}=n \times \frac{4}{3} \times \frac{22}{7} \times 8 \mathrm{~cm}^{3}$
From data $v_{1}=v_{2}$

$$
\begin{aligned}
& \Rightarrow(44)^{3}=n \times \frac{4}{3} \times \frac{22}{7} \times 8 \\
& \Rightarrow 44 \times 44 \times 44=n \times \frac{4}{3} \times \frac{22}{7} \times 8 \\
& \Rightarrow 121=n \times \frac{1}{3} \times \frac{1}{7} \\
& \Rightarrow n=21 \times 121 \\
& \Rightarrow n=2541
\end{aligned}
$$

\therefore no.of spherical balls can be made $=2541$
(OR)

Cylinder

Given that diameter of well (cylinder) $=7 \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow 2 r=7 \\
& r=\frac{7}{2} m
\end{aligned}
$$

Height h = 20 m
Volume of well (cylinder) $v_{1}=\pi r^{2} h$

$$
=\frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 20 m^{3}
$$

Cuboid (plat form)
length $l=22 \mathrm{~m}$
breadth $\mathrm{b}=14 \mathrm{~m}$
let height $=\mathrm{hm}$
Volume of platform (cuboid) $v_{2}=l b h$

$$
=22 \times 14 \times h m^{3}
$$

From data $v_{1}=v_{2}$
$\Rightarrow \frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 20=22 \times 14 \times h$
$\Rightarrow \frac{1}{7} \times \frac{7}{2} \times \frac{7}{2} \times 20=14 \times h$
$\Rightarrow 5=2 h$
$\Rightarrow h=\frac{5}{2}$
$\Rightarrow h=2.5 \mathrm{~m}$
32. Cylinder

Diameter of well (cylinder) $=14 \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow 2 r=14 \\
& \Rightarrow r=7 m
\end{aligned}
$$

Height $\mathrm{h}=15 \mathrm{~m}$
Volume of well $v_{1}=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times(7)^{2} \times 15 \mathrm{~m}^{3} \\
& =22 \times 7 \times 15 \mathrm{~m}^{3}
\end{aligned}
$$

Embank

Width of Embank w $=7 \mathrm{~m}$
Inner radius $\mathrm{r}=$ radius of well

$$
=7 \mathrm{~m}
$$

Outer radius of Embank $R=r+w$

$$
\begin{aligned}
& =7+7 \\
& =14 \mathrm{~m}
\end{aligned}
$$

Area of base of Embank $=\pi R^{2}-\pi r^{2}$

$$
\begin{aligned}
& =\pi\left(R^{2}-r^{2}\right) \\
& =\pi\left[(14)^{2}-(7)^{2}\right] \\
& =\frac{22}{7}\left[7^{2}\left(2^{2}-1\right)\right] \\
& =\frac{22}{7}\left[7^{2} \times 3\right] \\
& =\frac{22}{7} \times 7^{2} \times 3 \\
& =22 \times 7 \times 3 m^{2}
\end{aligned}
$$

Let height of Embank $=\mathrm{h}$
Volume of Embank $v_{2}=$ Area of base \times height
$=22 \times 7 \times 3 \times h \mathrm{~m}^{3}$
From data $v_{1}=v_{2}$
$\Rightarrow 22 \times 7 \times 15=22 \times 7 \times 3 \times h$
$\Rightarrow 5=h$
\therefore height $\mathrm{h}=5 \mathrm{~m}$

(OR)

Cylinder

Given that the diameters of silver coin (cylinder) $=1.75 \mathrm{~cm}$
$\Rightarrow 2 r=1.75$
$\Rightarrow r=\frac{1.75}{2} \mathrm{~cm}$
Thickness (height) $\mathrm{h}=2 \mathrm{~mm}$
$=\frac{2}{10} \mathrm{~cm}$
Volume of silver coin $=\pi r^{2} h$

$$
=\pi\left(\frac{1.45}{2}\right)^{2} \times \frac{2}{10} \mathrm{~cm}^{3}
$$

Let number of silver coins $=\mathrm{n}$
Volume of n silver coins $=n \times \pi\left(\frac{1.75}{2}\right)^{2} \times \frac{2}{10} \mathrm{~cm}^{3}$

Cuboid

length $l=5.5 \mathrm{~cm}$
breadth $\mathrm{b}=10 \mathrm{~cm}$
height $\mathrm{h}=3.5 \mathrm{~cm}$
Volume of cuboid $v_{2}=l b h$
$=5.5 \times 10 \times 3.5 \mathrm{~cm}^{3}$
From data
$v_{1}=v_{2}$
$n \times \pi \times\left(\frac{1.75}{2}\right)^{2} \times \frac{2}{10}=5.5 \times 10 \times 3.5 \mathrm{~cm}^{3}$
$\Rightarrow n \times \frac{22}{7} \times \frac{1.75}{2} \times \frac{1.75}{2} \times \frac{2}{10}=5.5 \times 10 \times 3.5$
$\Rightarrow n \times \frac{22}{100} \times \frac{1}{10}=10$
$\Rightarrow n=40 \times 10$
$\Rightarrow n=400$
\therefore number of silver coins $=400$
Sphere :
Given that diameter of sphere $=28 \mathrm{~cm}$

$$
\begin{aligned}
& \Rightarrow 2 r=28 \\
& \Rightarrow r=14 c m
\end{aligned}
$$

Volume of sphere $v_{1}=\frac{4}{3} \pi r^{3} \Rightarrow \frac{4}{3} \pi(14)^{3} \mathrm{~m}^{3}$

Cone

Diameter of cone $=4 \frac{2}{3} \mathrm{~cm}$
$\Rightarrow 2 r=\frac{14}{3}$
$\Rightarrow r=\frac{7}{3} \mathrm{~cm}$
Height $\mathrm{h}=3 \mathrm{~cm}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \pi\left(\frac{7}{3}\right)^{2} \times 3 m^{3}
$$

Let number of cones $=\mathrm{n}$
Volume of ' n ' cones $v_{2}=n \times \frac{1}{3} \times \pi \times\left(\frac{7}{3}\right)^{2} \times 3 m^{3}$
From data $v_{1}=v_{2}$

$$
\begin{aligned}
& \Rightarrow \frac{4}{3} \pi(14)^{3}=n \times \frac{1}{3} \times \pi \times\left(\frac{7}{3}\right)^{2} \times 3 \\
& \Rightarrow 4 \times 14 \times 14 \times 14=n \times \frac{7}{3} \times \frac{7}{3} \times 3 \\
& \Rightarrow 16 \times 14=\frac{n}{3} \\
& \Rightarrow n=3 \times 16 \times 14 \\
& =672
\end{aligned}
$$

\therefore number of cones formed $=672$
(OR)

Hemisphere

Given that radius of hemispherical bowl $\mathrm{r}=15 \mathrm{~cm}$
Volume $v_{1}=\frac{2}{3} \pi r^{3}$
$=\frac{2}{3} \times \pi \times(15)^{3} \mathrm{~cm}^{3}$

Cylinderical bottle :

Diameter $=5 \mathrm{~cm}$
$\Rightarrow 2 r=5 \mathrm{~cm}$
$\Rightarrow r=\frac{5}{2} \mathrm{~cm}$
height $\mathrm{h}=6 \mathrm{~cm}$
volume of a bottle $=\pi r^{2} h$

$$
=\pi \times\left(\frac{5}{2}\right)^{2} \times 6 \mathrm{~cm}^{3}
$$

Let number of bottles required $=n$
Volume of n bottles $v_{2}=n \times \pi \times\left(\frac{5}{2}\right)^{2} \times 6$
From data $v_{1}=v_{2}$
$\frac{2}{3} \times \pi \times(15)^{3}=n \times \pi \times\left(\frac{5}{2}\right)^{2} \times 6 \mathrm{~cm}^{3}$
$\Rightarrow \frac{22}{3} \times 15 \times 15 \times 15=n \times \frac{5}{2} \times \frac{5}{2} \times 6$
$\Rightarrow 2 \times 15=\frac{n}{2}$
$\Rightarrow n=2 \times 2 \times 15$
$n=60$
\therefore number of bottles required $=60$

