Given that radius of conical tent 21. r = 7 mand height h = 10 mLet 'l' be slant height of conical tent then W.K.T $l^2 = r^2 + h^2$ $=7^{2}+10^{2}$ =49+100=149 $l^2 = 149$ $\Rightarrow l = \sqrt{149} = 12.2 m$ Now surface area of tent $=\pi rl$ $=\frac{22}{7}\times7\times12.2$ $= 268.4 m^2$ Given that width of canvas = 2 mLength of canvas used = $\frac{\text{Area}}{\text{Width}}$ $=\frac{268.4}{2}$ =134.2 m 22. Given that the diameter of oil drum = 2m $\Rightarrow 2r = 2$ \Rightarrow r=1m and height h = 7 mTotal surface Area of cylindrical drum = $2\pi r(h+r)$ $=2\times\frac{22}{7}\times1(7+1)$ $=2\times\frac{22}{7}\times8$ $=\frac{352}{7}$ $= 50.28 m^2$ Painting charges per $1m^2 = Rs 3$ Cost of painting of 10 drums $=10 \times 50.28 \times 3$ =Rs 1508.40 23. Let r be the common radius of a sphere, a cone and cylinder Height of sphere = its diameter = 2rThen, the height of the cone = height of cylinder = height of sphere Let *l* be the slant height of cone = $\sqrt{r^2 + h^2}$ $=\sqrt{r^2+\left(2r\right)^2}$ $=\sqrt{5}r$ S_1 = curved surface area of sphere = $4\pi r^2$ S_2 = curved surface area of cylinder, $2\pi rh = 2\pi r \times 2r$ $=4\pi r^2$ S_3 = curved surface area of cone = πrl $=\pi r \times \sqrt{5}r$

Ratio of curved surface area as $\therefore S_1: S_2: S_3 = 4\pi r^2: 4\pi r^2: \sqrt{5}\pi r^2$ $=4:4:\sqrt{5}$ 24. Given that Radius of Jocker cap (cone) r = 7 cm and height h = 24 cm W.K.T $l = \sqrt{r^2 + h^2}$ $=\sqrt{49+576}$ $=\sqrt{625}$ = 25 Lateral surface of one cap = πrl $=\frac{22}{7}\times7\times25$ $= 550 \, cm^2$ 25. Diameter of Heap (conical) = 12 m2r = 12r = 6mHeight h = 8 mVolume of cone $v = \frac{1}{3}\pi r^2 h$ $=\frac{1}{3}\times\frac{22}{7}\times6^2\times8$ $=\frac{1}{3}\times\frac{22}{7}\times36\times8$ $=\frac{2112}{7}$ $= 301.71 cm^{3}$ ii) let slant height = l cmW.K.T $l^2 = r^2 + h^2$ $= 6^2 + 8^2$ = 36 + 64=100 $l^2 = 100 \Longrightarrow l = \sqrt{100} \Longrightarrow l = 10 \, cm$ The canvas cloth is required to cover the heap = πrl $= 3.14 \times 6 \times 10$ $=188.40 \, cm^2$ Radius of cone = $\frac{1}{2}$ edge of cube 26. $=\frac{1}{2}\times7$ $=\frac{7}{2}cm$ Height of cone = edge of cube = 7 cmVolume of cone = $\frac{1}{3}\pi r^2 h$ $=\frac{1}{3}\times\frac{22}{7}\times\frac{7}{2}\times\frac{7}{2}\times7$

 $=\sqrt{5}\pi r^2$

$$=\frac{1}{3} \times 22 \times \frac{7}{2} \times \frac{7}{2}$$
$$=\frac{539}{6}$$
$$= 89.833 \, cm^3$$

27. Given that radius of sphere r = 4.2 cm Volume $v_1 = \frac{4}{3}\pi r^3$ $= \frac{4}{3} \times \pi \times (4.2)^3$ $= \frac{4}{3} \times \pi \times 4.2 \times 4.2 \times 4.2$

$$= 4\pi \times 1.4 \times 4.2 \times 4.2 \, cm^3$$

also given radius of cylinder r = 6 cm Let the height of cylinder = h cm Volume of cylinder $v_2 = \pi r^2 h$

$$= \pi \times 6^2 \times h$$
$$= \pi \times 6 \times 6 \times h \, cm^3$$

From data $v_1 = v_2$

$$\Rightarrow 4\pi \times 1.4 \times 4.2 \times 4.2 = \pi \times 6 \times 6 \times h$$

$$\Rightarrow 4 \times 1.4 \times 0.7 \times 0.7 = h$$

$$\Rightarrow 4 \times 0.686 = h$$

$$\Rightarrow 2.744 = h$$

$$\therefore \text{Height h} = 2.744 \text{ cm}$$

28. Given that Radii of 3 spheres be $r_1 = 6cm$ $r_2 = 8cm$ $r_3 = 10cm$

Volumes of spheres $v_1 = \frac{4}{3}\pi r^3$ $= \frac{4}{3}\pi \times 6^3 cm^3$ $v_2 = \frac{4}{3}\pi \times 8^3 cm^3$ $v_3 = \frac{4}{3}\pi \times 10^3 cm^3$ Total volume of 3 spheres $v^1 = \frac{4}{3}\pi \times 6^3 + \frac{4}{3}\pi \times 8^3 + \frac{4}{3}\pi \times 10^3$ $= \frac{4}{3}\pi \left[6^3 + 8^3 + 10^3 \right]$ (1) Let radius of resulting sphere = r Volume $v = \frac{4}{3}\pi r^3 cm^3$ (2) From data $v^1 = r$ (1) = (2) $= \frac{4}{3}\pi \left[6^3 + 8^3 + 10^3 \right] = \frac{4}{3}\pi r^3$ $\Rightarrow 2^3 \times 3^3 + 2^3 \times 4^3 + 2^3 \times 5^3 = r^3$ $\Rightarrow 2^3 \left[3^3 + 4^3 + 5^3 \right] = r^3$ $\Rightarrow 2^3 \left[216 \right] = r^3$

$$\Rightarrow 2^3 \times 6^3 = r^3$$

 $\Rightarrow 12^3 = r^3$ \Rightarrow r = 12 cm 14 mm 29. Cylinder width of the capsule = 5 mmRadius of cylinder $r = \frac{5}{2} = 2.5 mm$ Height of cylinder = 14 mmSurface Area of cylinder $s_1 = 2\pi rh$ $=2\pi \times 2.5 \times 14$ $=70\pi mm^2$ Hemisphere Radius of Hemisphere $r = \frac{5}{2} = 2.5 mm$ Curved surface area of hemisphere $s_2 = 2\pi r^2$ $=2\pi(2.5)^{2}$ $=12.5\pi\,mm^{2}$ Surface Area of capsule = $s_1 + 2 \times s_2$ $=70\pi + 2 \times 12.5\pi$ $=\pi(70+25)$ $=95\pi$ $=95 \times 3.14$ $= 298.3 \, mm^2$ (\mathbf{OR}) Let side of a cube = a cm Given that volume = 64 cm^3 $\Rightarrow a^3 = 4^3$ $\Rightarrow a = 4 cm$ Length of cuboid l = 2a $= 2 \times 4$ =8cmbreadth b = a = 4 cm height h = a = 4 cm Total surface area of resulting cuboid = 2(lh+bh+lb) $=2(2a \times a + a \times a + 2a \times a)$ $=2(2a^{2}+a^{2}+2a^{2})$ $=2\times5a^2$ ξ $=10a^{2}$ $=10 \times 4^{2}$ $=10 \times 16$ $=160 \, cm^2$ 30. Hemisphere Given common diameter = 4.2

Smn

2r = 4.2r = 2.1 cmLet height of conical portion $h_1 = 7$ cm Height of cylindrical portion $h_2 = 12$ cm Hemisphere

Volume of hemisphere $v_1 = \frac{4}{3}\pi r^3$

$$=\frac{2}{3}\pi\times(2.1)^3\,cm^3$$

Cylinder

Volume of cylinder $v_2 = \pi r^2 h_2$ = $\pi \times (2.1)^2 \times 12$ = $12\pi (2.1)^2 cm^3$

٦

Volume of cone
$$v_3 = \frac{1}{3}\pi r^2 h_1$$

= $\frac{1}{3}\pi \times (2.1)^2 \times 7 \, cm^3$

h₁ h₂ h₂ h₂ h₂ h₂ h₂

Volume of the solid toy = $v_1 + v_2 + v_3$

$$= \frac{2}{3}\pi (2.1)^{3} + 12\pi (2.1)^{2} + \frac{1}{3}\pi (2.1)^{2} \times 7$$

= $(2.1)^{2}\pi \left[\frac{2}{3} \times 2.1 + 12 + \frac{1}{3} \times 7\right]$
= $2.1 \times 2.1 \times \frac{22}{7} [1.4 + 2 + 2.33]$
= $0.3 \times 2.1 \times 22 [17.13]$
= 13.86×15.73
= $218.0178 \, cm^{3}$

(**OR**)

Volume of Wax in the rectangular solid (cuboid) $v_1 = lbh$ = $66 \times 42 \times 21 cm^3$ Radius of cylinder candle $r = \frac{4.2}{2} = 2.1 cm$ Height of cylinder candle h = 2.8 cmVolume of candle $= \pi r^2 h$ $= \frac{22}{7} \times (2.1)^2 \times 2.8$ $= \frac{22}{7} \times 2.1 \times 2.1 \times 2.8$ $= 22 \times 2.1 \times 2.1 \times 2.1 \times 0.4 cm^3$ Let number of candles = nVolume of n candles $v_2 = n \times 22 \times 2.1 \times 2.1 \times 0.4 cm^3$ From data $v_1 = v_2$ $\Rightarrow 66 \times 42 \times 21 = n \times 22 \times \frac{21}{10} \times \frac{21}{10} \times \frac{4}{10}$ $\Rightarrow 6 = n \times \frac{4^2}{1000}$ $\Rightarrow 2n = 3000$ n = 1500

31. Cube Given that side of lead cube, a=44 cm Volume of lead cube $v_1 = a^3$ $=(44)^{3} cm^{3}$ Spherical ball (sphere) Diameter of spherical ball = 4 cm 2r = 4r = 2 cmVolume of spherical ball = $\frac{4}{3}\pi r^3$ $=\frac{4}{3}\times\frac{22}{7}\times2^{3}$ $=\frac{4}{3}\times\frac{22}{7}\times8\,cm^3$ Let number of balls = n Volume of n balls $v_2 = n \times \frac{4}{3} \times \frac{22}{7} \times 8 \, cm^3$ From data $v_1 = v_2$ $\Rightarrow (44)^3 = n \times \frac{4}{3} \times \frac{22}{7} \times 8$ $\Rightarrow 44 \times 44 \times 44 = n \times \frac{4}{3} \times \frac{22}{7} \times 8$ $\Rightarrow 121 = n \times \frac{1}{3} \times \frac{1}{7}$ \Rightarrow *n* = 21×121 \Rightarrow *n* = 2541

 \therefore no.of spherical balls can be made = 2541

(\mathbf{OR})

Cylinder

Given that diameter of well (cylinder) = 7 m

$$\Rightarrow 2r = 7$$
$$r = \frac{7}{2}m$$

Height h = 20 m Volume of well (cylinder) $v_1 = \pi r^2 h$

$$=\frac{22}{7}\times\left(\frac{7}{2}\right)^2\times20\,m^3$$

<u>Cuboid</u> (plat form) length l = 22 m breadth b = 14 m let height = hm Volume of platform (cuboid) $v_2 = lbh$ $= 22 \times 14 \times hm^3$

From data $v_1 = v_2$

$$\Rightarrow \frac{22}{7} \times \left(\frac{7}{2}\right)^2 \times 20 = 22 \times 14 \times h$$
$$\Rightarrow \frac{1}{7} \times \frac{7}{2} \times \frac{7}{2} \times 20 = 14 \times h$$
$$\Rightarrow 5 = 2h$$
$$\Rightarrow h = \frac{5}{2}$$
$$\Rightarrow h = 2.5m$$

32. Cylinder

Diameter of well (cylinder) = 14 m $\Rightarrow 2r = 14$ $\Rightarrow r = 7m$

Height h = 15m Volume of well $v_1 = \pi r^2 h$ $= \frac{22}{7} \times (7)^2 \times 15 m^3$ $= 22 \times 7 \times 15 m^3$

Embank

Width of Embank w = 7m Inner radius r = radius of well = 7m Outer radius of Embank R = r + w= 7 + 7 = 14 m Area of base of Embank = $\pi R^2 - \pi r^2$ = $\pi (R^2 - r^2)$ = $\pi [(14)^2 - (7)^2]$ = $\frac{22}{7} [7^2 (2^2 - 1)]$ = $\frac{22}{7} [7^2 \times 3]$ = $\frac{22}{7} \times 7^2 \times 3$ = $22 \times 7 \times 3 m^2$

Let height of Embank = h Volume of Embank v_2 = Area of base × height = $22 \times 7 \times 3 \times h m^3$ From data $v_1 = v_2$ $\Rightarrow 22 \times 7 \times 15 = 22 \times 7 \times 3 \times h$ $\Rightarrow 5 = h$ \therefore height h = 5m

Cylinder

Given that the diameters of silver coin (cylinder) = 1.75 cm $\Rightarrow 2r = 1.75$ $\Rightarrow r = \frac{1.75}{2} cm$ Thickness (height) h = 2 mm $= \frac{2}{10} cm$ Volume of silver coin = $\pi r^2 h$ $= \pi \left(\frac{1.45}{2}\right)^2 \times \frac{2}{10} cm^3$

Let number of silver coins = n

Volume of n silver coins =
$$n \times \pi \left(\frac{1.75}{2}\right)^2 \times \frac{2}{10} cm^3$$

Cuboid

length l = 5.5 cm breadth b = 10 cmheight h = 3.5 cm Volume of cuboid $v_2 = lbh$ $=5.5\times10\times3.5\,cm^{3}$ From data $v_1 = v_2$ $n \times \pi \times \left(\frac{1.75}{2}\right)^2 \times \frac{2}{10} = 5.5 \times 10 \times 3.5 \, cm^3$ $\Rightarrow n \times \frac{22}{7} \times \frac{1.75}{2} \times \frac{1.75}{2} \times \frac{2}{10} = 5.5 \times 10 \times 3.5$ $\Rightarrow n \times \frac{22}{100} \times \frac{1}{10} = 10$ \Rightarrow n = 40×10 $\Rightarrow n = 400$ \therefore number of silver coins = 400 Sphere : Given that diameter of sphere = 28 cm $\Rightarrow 2r = 28$ \Rightarrow r = 14 cm Volume of sphere $v_1 = \frac{4}{3}\pi r^3 \Rightarrow \frac{4}{3}\pi (14)^3 m^3$ Cone Diameter of cone = $4\frac{2}{3}cm$ $\Rightarrow 2r = \frac{14}{3}$ $\Rightarrow r = \frac{7}{3}cm$ Height h = 3 cm

Volume of cone = $\frac{1}{3}\pi r^2 h$ = $\frac{1}{3}\pi \left(\frac{7}{3}\right)^2 \times 3m^3$

Let number of cones = n

Volume of 'n' cones $v_2 = n \times \frac{1}{3} \times \pi \times \left(\frac{7}{3}\right)^2 \times 3m^3$

From data $v_1 = v_2$

$$\Rightarrow \frac{4}{3}\pi (14)^3 = n \times \frac{1}{3} \times \pi \times \left(\frac{7}{3}\right)^2 \times 3$$
$$\Rightarrow 4 \times 14 \times 14 \times 14 = n \times \frac{7}{3} \times \frac{7}{3} \times 3$$
$$\Rightarrow 16 \times 14 = \frac{n}{3}$$
$$\Rightarrow n = 3 \times 16 \times 14$$
$$= 672$$
$$\therefore \text{ number of cones formed} = 672$$
$$(OR)$$

Hemisphere

Given that radius of hemispherical bowl r = 15 cm

Volume
$$v_1 = \frac{2}{3}\pi r^3$$

= $\frac{2}{3} \times \pi \times (15)^3 cm^3$
Cylinderical bottle :
Diameter = 5 cm

Diameter = 5 cr
$$\Rightarrow 2r = 5 cm$$

 $\Rightarrow r = \frac{5}{2}cm$

height h = 6 cm volume of a bottle = $\pi r^2 h$

$$=\pi \times \left(\frac{5}{2}\right)^2 \times 6\,cm^3$$

Let number of bottles required = n

Volume of n bottles $v_2 = n \times \pi \times \left(\frac{5}{2}\right)^2 \times 6$

From data $v_1 = v_2$

$$\frac{2}{3} \times \pi \times (15)^3 = n \times \pi \times \left(\frac{5}{2}\right)^2 \times 6 \, cm^3$$
$$\Rightarrow \frac{22}{3} \times 15 \times 15 \times 15 = n \times \frac{5}{2} \times \frac{5}{2} \times 6$$
$$\Rightarrow 2 \times 15 = \frac{n}{2}$$
$$\Rightarrow n = 2 \times 2 \times 15$$
$$n = 60$$
$$\therefore \text{ number of bottles required} = 60$$