# Dr.K.K.R GOWTHAM (E.M) HIGH SCHOOL :: GUDIVADA 

Class : X - State

Marks : 50
Sub : Mathematics
PRE-FINAL
Time: $\mathbf{2 ~}_{1 / 2} \mathbf{h r s}$

## SECTION - A

1. $0.375=0.375 \times \frac{1000}{1000}=\frac{375}{1000}=\frac{3}{8}$
2. Given $x^{2}-5 x+6$

Here $a=1, b=-5, c=6$
Discriminant $=b^{2}-4 a c$

$$
=(-5)^{2}-4(1)(6)=25-24=1
$$

3. (C) 5
because, factors of 12 are $1,2,3,4,6,12$
4. $15=12 \times 1+3$
$12=3 \times 4+0$
H.C.F $(12,15)=3$
5. Volume of sphere $=\frac{4}{3} \pi r^{3}$
6. (D) Infinitely many solutions
7. Coincident lines : The lines which coincide or lie on top of each other are called coincident lines.
8. Given equation is $x^{2}+7 x+10$

$$
=x^{2}-(-7) x+10
$$

$\therefore$ sum of zeros $=-7$
9. Common difference of the given series
$d=2-1=3-2=4-3=5-4=-------=1$
[If $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots \ldots \ldots$ are in A.P common difference $d=a_{2}-a_{1}=a_{3}-a_{2}=\ldots \ldots .$. ]
10. Given radius of a sphere, $\mathrm{r}=7 \mathrm{~cm}$
$\therefore$ Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \\
& =1437.333 \mathrm{~cm}^{3}
\end{aligned}
$$

11. $\mathrm{n}(\mathrm{A})=$ No.of elements in set $\mathrm{A}=4$
12. Given equation is $a x^{2}+b x+c$

$$
\begin{aligned}
& =a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) \\
& =a\left(x^{2}-\left(-\frac{b}{a}\right) x+\frac{c}{a}\right)
\end{aligned}
$$

$\therefore$ Product of the roots $=\frac{c}{a}$

## SECTION - B

13. Given $A=\{p, q, r, s\}, B=\{1,2,3,4\}$

Every element in set A is not in set B

Every element in set $B$ is not in set $A$
$\therefore \mathrm{A} \& \mathrm{~B}$ are not equal sets.
14. Given equation is in the form of $a x^{2}+b x+c=0$
$\therefore a=1, b=-8, c=16$
$b^{2}-4 a c=(8)^{2}-4(16)=64-64=0$
$\therefore$ Given equation has equal roots.
15. If two lines are parallel lines then the condition is $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

Ex: Given lines are $4 x+8 y-30=0$

$$
2 x+4 y-62=0
$$

$\therefore \frac{4}{2}=\frac{8}{4} \neq \frac{-30}{62}$
16. Given surface area of hemisphere is ' $s$ '

We know that surface area of hemisphere is $3 \pi r^{2}$
$\therefore s=3 \pi r^{2}$
$3 \pi r^{2}=s$
$r^{2}=\frac{s}{3 \pi}$
$r=\sqrt{\frac{s}{3 \pi}}$
17. Given $\mathrm{n}^{\text {th }}$ term of an A.P is $6 \mathrm{n}+2$
$t_{n}=6 n+2$
$=2+6 n-6+6$
$=8+(n-1) 6$
This is in the form of $a+(n-1) d$
$\therefore$ common difference $\mathrm{d}=6$
18. $\quad \log _{\frac{3}{2}}{ }^{\frac{27}{8}}=\log _{\left(\frac{3}{2}\right)}\left(\frac{3}{2}\right)^{3} \quad\left[\frac{27}{8}=\frac{3 \times 3 \times 3}{2 \times 2 \times 2}=\frac{3^{3}}{2^{3}}=\left(\frac{3}{2}\right)^{3}\right]$
$=3 \log _{\frac{3}{2}} \frac{3}{2} \quad\left[\log _{a}{ }^{x^{m}}=m \log a^{x}\right]$
$=3(1)=3$
19. Given $t_{n}=(-1)^{n} 2019$
(We know that $\mathrm{n}^{\text {th }}$ term of G.P $t_{n}=a r^{n-1}$ ]
$t_{n}=(-1)^{n} 2019$
$=2019(-1)^{n} \times \frac{(-1)}{(-1)}$
$=-2019(-1)^{n-1}$
$\therefore$ common ratio, $\mathrm{r}=-1$
20. Given surface area of a sphere is $616 \mathrm{~cm}^{2}$

We know that curved surface area of sphere is $4 \pi r^{2}$

$$
4 \pi r^{2}=616
$$

$4 \times \frac{22}{7} \times r^{2}=616$

$$
r^{2}=7^{2}
$$

$$
\mathrm{r}=7 \mathrm{~cm}
$$

$\therefore$ diameter of sphere is $2(r)=2(7)=14 \mathrm{~cm}$

## SECTION - C

21. Let us assume $2+\sqrt{3}$ is irrational.

That is, we can find coprimes p and $\mathrm{q}(\mathrm{q} \neq 0)$
Such that $2+\sqrt{3}=\frac{p}{q}$
$\sqrt{3}=\frac{p}{q}-2$
$\sqrt{3}=\frac{p-2 q}{q}$
Since p and q are integers, the R.H.S of the equation (1)
$\frac{p-2 q}{q}$ is rational so the LHS $\sqrt{3}$ also rational But this contradicts the fact that $\sqrt{3}$ is
irrational
This contradiction has arisen because of our in correct assumption that $2+\sqrt{3}$ is rational.
So, We calculate that $2+\sqrt{3}$ is irrational.
22. Given $\alpha=2, \beta=-1$

The quadratic polynomial is $k\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)$
$=k\left(x^{2}-(2-1) x+(2)(-1)\right)$
$=k\left(x^{2}-x-2\right)$
When $\mathrm{k}=1$, The quadratic polynomial is $x^{2}-x-2$.
23. Given radius of hemisphere, $\mathrm{r}=3 \mathrm{~cm}$

Volume of hemisphere is $\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{\not p} \times \frac{22}{7} \times 3 \times 3 \times \not p \\
& =\frac{396}{7}=56.57 \mathrm{~cm}^{3}
\end{aligned}
$$

24. Given $3^{\text {rd }}$ term is 5
$t_{3}=5 \Rightarrow a+2 d=5$
$7^{\text {th }}$ term is $9 t_{7}=9 \Rightarrow a+6 d=9$

$$
\begin{gather*}
\text { (2) }-(1) \Rightarrow \not \subset+6 d-\not \subset-2 d=9-5  \tag{2}\\
4 \mathrm{~d}=4 \\
\mathrm{~d}=1
\end{gather*}
$$

$\qquad$
$\square$

Sub d = 1 in equation (1)
$a+2(1)=5$
$a=5-2$
$\mathrm{a}=3$
$\therefore$ A.P series is $a, a+d, a+2 d, a+3 d,------$
required A.P series is $3,3+1,3+2(1), 3+3(1),-------$
$\Rightarrow 3,4,5,6,---------$
25. Given $3 x-5 y=-1$

$$
\begin{equation*}
x-y=-1 \tag{2}
\end{equation*}
$$

Equation (2) $\Rightarrow-y=-1-x$
$y=x+1$
Substituting $y=x+1$ in equation (1)
$3 x-5(x+1)=-1$
$3 x-5 x-5=-1$
$-2 x=-1+5$
$-2 x=4 \Rightarrow x=\frac{4}{-2}$
$\therefore$ sub $x-2$ in $y=x+1$
$y=-2+1$
$=-1$
$\therefore x=-2, y=-1$
26. Given a sphere, a cylinder and a cone having same radius

Let radius be ' $r$ '
$\mathrm{S}_{1}=$ curved surface area of sphere $=4 \pi r^{2}$
$\mathrm{S}_{2}=$ curved surface area of cylinder $=2 \pi r h$
$\mathrm{S}_{3}=$ curved surface area of cone $=\pi r l$
Ratio of Sphere, Cylinder and a Cone is $\mathrm{S}_{1}: \mathrm{S}_{2}: \mathrm{S}_{3}=4 \pi r^{2}: 2 \pi r h: \pi r l$

$$
=4 r: 2 h: l
$$

27. We know that sum of two supplementary angle is $180^{\circ}$

Let smaller angle be $x^{0}$
Given larger angle exceeds the smaller by $180^{\circ}$
$\therefore$ larger angle is $x^{0}+18^{0}$
$x^{0}+x^{0}+18^{0}=180^{0}$
$2 x^{0}=180^{0}-18^{0}$
$2 x^{0}=162$
$x^{0}=\frac{162^{0}}{2}$
$\therefore$ Two angles are $81^{\circ}, 81^{\circ}+18^{0}$
$\Rightarrow 81^{0}, 99^{\circ}$
28. Given $A=\{1,2,3\}, B=\{3,4,5\}$

$$
\begin{aligned}
A \cap B & =\{1,2,3\} \cap\{3,4,5\} \\
& =\{3\}
\end{aligned}
$$



## SECTION - D

29.A) Let $r$ be the common radius of a sphere, a cone and a cylinder

Height of a sphere $=$ its diameter $=2 \mathrm{r}$
Then, the height of the cone = height of cylinder

$$
\begin{aligned}
& =\text { height of sphere } \\
& =2 \mathrm{r}
\end{aligned}
$$

Let $l$ be the slant height of cone $=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\sqrt{r^{2}+(2 r)^{2}} \\
& =\sqrt{r^{2}+4 r^{2}}
\end{aligned}
$$

$$
=\sqrt{5} r
$$

$\mathrm{S}_{1}=$ curved surface area of sphere $=4 \pi r^{2}$
$\mathrm{S}_{2}=$ curved surface area of cylinder $=2 \pi r h=2 \pi r \times 2 r$

$$
=4 \pi r^{2}
$$

$\mathrm{S}_{3}=$ curved surface area of cone $=\pi r l=\pi r \times \sqrt{5} r$

$$
=\sqrt{5} \pi r^{2}
$$

Ratio of curved surface area as

$$
\begin{aligned}
\therefore S_{1}: S_{2}: S_{3} & =4 \pi r^{2}: 4 \pi r^{2}: \sqrt{5} \pi r^{2} \\
& =4: 4: \sqrt{5}
\end{aligned}
$$

29. B) Given sum of first 14 terms of an AP is 1050
$\therefore S_{14}=1050$
$\left[\because S_{n}=\frac{n}{2}(2 a+(n-1) d)\right]$
$\frac{14}{2}[2 a+(14-1) d]=1050$
$2 a+13 d=150$
Also given first term is 10
$\therefore \mathrm{a}=10$
Sub a= 10 in equation (1)

$$
2(10)+13 d=150
$$

$$
20+13 d=150
$$

$$
13 d=150-20
$$

$$
13 d=130
$$

$$
d=10
$$

$20^{\text {th }}$ term, $T_{20}=a+19 d$

$$
\begin{aligned}
& =10=19(10) \\
& =10+190=200
\end{aligned}
$$

30.A) Let the speed of current $=3 \mathrm{kmph}$

Speed of the current $=3 \mathrm{kmph}$
Then speed of the boat in up stream $=(x-3) k m p h$
Speed of the boat in down stream $=(x+3) k m p h$
By given conditions of problem,
$\therefore \frac{24}{x-3}+\frac{24}{x+3}=6$
$24\left[\frac{1}{x-3}+\frac{1}{x+3}\right]=6$
$4\left(\frac{x+3+x-3}{(x-3)(x+3)}\right)=1$
$4(2 x)=(x-3)(x+3)$
$8 x=x^{2}-9$
$x^{2}-8 x-9=0$
$x^{2}-9 x+x-9=0$
$x(x-9)+1(x-9)=0$
$(x-9)(x+1)=0$
$\therefore x=-1,+9$
$\therefore x$ can't be negative
$\therefore x=9$
i.e., speed of the boat instill water $=9 \mathrm{kmph}$.
30.B) Side of lead cube $=44 \mathrm{~cm}$

Radius of spherical ball $=\frac{4}{2} \mathrm{~cm}=2 \mathrm{~cm}$
Now volume of a spherical ball $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times 2^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times 8 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of ' $n$ ' spherical balls $=\frac{4}{3} \times \frac{22}{7} \times 8 \times n \mathrm{~cm}^{3}$
It is clear that volume of ' $n$ ' spherical balls $=$ Volume of lead cube
$\Rightarrow \frac{4}{3} \times \frac{22}{7} \times 8 \times x=(44)^{3}$
$\frac{4}{3} \times \frac{22}{7} \times 8 \times x=44 \times 44 \times 44$
$x=\frac{44 \times 44 \times 44 \times 3 \times 7}{4 \times 22 \times 8}$
$=11 \times 11 \times 3 \times 7$
$=2541$
Hence, total number of spherical balls $=2541$
31.A)
i) $\frac{35}{50}=\frac{7 \times 5}{2 \times 5 \times 5}=\frac{7}{10}=0.7$
ii) $\frac{21}{25}=\frac{21}{5^{2}}$

$$
=\frac{21}{5^{2}} \times \frac{2^{2}}{2^{2}}
$$

$$
=\frac{21 \times 4}{10^{2}}=\frac{84}{100}=0.84
$$

iii) $\frac{7}{8}=\frac{7}{2^{3}}$

$$
=\frac{7}{2^{3}} \times \frac{5^{3}}{5^{3}}=\frac{7 \times 125}{10^{3}}=\frac{875}{1000}=0.875
$$

31. B) Given zero's $\alpha=2, \beta=-\frac{1}{3}$

The required quadratic polynomial is
$k\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)$
$=k\left(x^{2}-\left(2-\frac{1}{3}\right) x+(2)\left(\frac{-1}{3}\right)\right)$
$=k\left(x^{2}-\left(\frac{6-1}{3}\right) x-\frac{2}{3}\right)$
$=k\left(x^{2}-\frac{5}{3} x-\frac{2}{3}\right)$
$=\frac{k}{3}\left(3 x^{2}-5 x-2\right)$
We can put different values of $K$

When $\mathrm{K}=3$, the quadratic polynomial will be $3 x^{2}-5 x-2$
32.A) Disjoint sets : If $A$ and $B$ are disjoint sets then $A \cap B=\phi$
i) False, because $\{2,3,4,5\} n\{3,6\}=\{3\}$
ii) False, because, $\{a, e, i, o, u\} n\{a, b, c, d\}=\{a\}$
iii) True, because $\{2,6,10,14\} n\{3,7,11,15\}=\{ \}=\phi$
iv) True, because $\{2,6,10\} n\{3,7,11\}=\{ \}=\phi$
32.B) Let the length of the rectangle, $l=x$

Given perimeter $=2(l+b)=28$
$\Rightarrow l+b=\frac{28}{2}=14 \Rightarrow x+b=14 \Rightarrow b=14-x$
$\therefore$ Breadth of a rectangle $b=14-x$
Area of rectangle $=$ length $\times$ breadth

$$
\begin{aligned}
& =x(14-x) \\
& =14 x-x^{2}
\end{aligned}
$$

According to the problem $14 x-x^{2}=40$

$$
\begin{aligned}
& x^{2}-14 x+40=0 \\
& x^{2}-10 x-4 x+40=0 \\
& x(x-10)-4(x-10)=0 \\
& (x-4)(x-10)=0 \\
& \therefore x=10,4
\end{aligned}
$$

$\therefore$ length $=10 \mathrm{~m}$ or 4 m breadth $=14-10$ (or) $14-4$

$$
=4 \mathrm{~m} \text { (or) } 10 \mathrm{~m}
$$

33.A) Given $P(x)=x^{2}-3 x-4 \Rightarrow y=x^{2}-3 x-4$

| x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{x}^{2}$ | 4 | 1 | 0 | 1 | 4 | 9 | 16 | 25 |
| -3 x | 6 | 3 | 0 | -3 | -6 | -9 | -12 | -15 |
| -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4 |
| y | 6 | 0 | -4 | -6 | -6 | -4 | 0 | 6 |

Order pairs are $(-2,6) ;(-1,0) ;(0,-4) ;(1,-6) ;(2,-6) ;(3,-4) ;(4,0) ;(5,6)$


Verification $x^{2}-3 x-4$
$=x^{2}-4 x+x-4$
$=x(x-4)+1(x-4)$
$=(x+1)(x-4)$
For zeros $x+1=0 ; x-4=0$

$$
\begin{equation*}
x=-1 \quad x=4 \tag{1}
\end{equation*}
$$

33.B) Given $3 x+4 y=2$
$6 x+8 y=4$
Here $\mathrm{a}_{1}=3, \mathrm{~b}_{1}=4, \mathrm{c}_{1}=2$
$\mathrm{a}_{2}=6, \mathrm{~b}_{2}=8, \mathrm{c}_{2}=4$
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{3}{6}=\frac{4}{8}=\frac{2}{4}$

1) $\Rightarrow 3 x+4 y=2$
$4 y=2-3 x$
$y=\frac{2-3 x}{4}$

| $x$ | 2 | 6 |
| :---: | :---: | :---: |
| $y=\frac{2-3 x}{4}$ | -1 | -4 |

2) $\Rightarrow 6 x+8 y=4$

$$
\begin{aligned}
& 8 y=4-6 x \\
& y=\frac{4-6 x}{8}
\end{aligned}
$$

| $x$ | 2 | 6 |
| :---: | :---: | :---: |
| $y=\frac{4-6 x}{8}$ | -1 | -4 |

Order pair (2, -1); (6, -4)


Since $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ therefore, they are coincident lines so, the pair of linear equations is consistent and have infinitely many solutions.

