Dr.K.K.R GOWTHAM (E.M) HIGH SCHOOL :: GUDIVADA

Class : X – State

Sub : Mathematics

PRE-FINAL Paper – I Key Marks : 50 Time: 2 ½ hrs

<u>SECTION – A</u>

1. $0.375 = 0.375 \times \frac{1000}{1000} = \frac{375}{1000} = \frac{3}{8}$

- 2. Given $x^2 5x + 6$ Here a = 1, b = -5, c = 6Discriminant $= b^2 - 4ac$ $= (-5)^2 - 4(1)(6) = 25 - 24 = 1$
- 3. (C) 5

8.

because, factors of 12 are 1, 2, 3, 4, 6, 12

- 4. $15 = 12 \times 1 + 3$ $12 = 3 \times 4 + 0$ H.C.F (12, 15) = 3
- 5. Volume of sphere = $\frac{4}{3}\pi r^3$
- 6. (D) Infinitely many solutions
- 7. Coincident lines : The lines which coincide or lie on top of each other are called coincident lines.

Given equation is
$$x^2 + 7x + 10$$

= $x^2 - (-7)x + 10$

$$=x^{2}-(-7)x+10$$

 \therefore sum of zeros = -7

- 9. Common difference of the given series d = 2 - 1 = 3 - 2 = 4 - 3 = 5 - 4 = - - - - = 1[If a_1, a_2, a_3 are in A.P common difference $d = a_2 - a_1 = a_3 - a_2 = ...$]
- 10. Given radius of a sphere, r = 7 cm

$$\therefore \text{ Volume of sphere} = \frac{4}{3}\pi r^3$$
$$= \frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7$$
$$= 1437.333 \, cm^3$$

- 11. n(A) = No.of elements in set A = 4
- 12. Given equation is $ax^2 + bx + c$

$$= a \left(x^{2} + \frac{b}{a} x + \frac{c}{a} \right)$$
$$= a \left(x^{2} - \left(-\frac{b}{a} \right) x + \frac{c}{a} \right)$$

: Product of the roots =
$$\frac{c}{a}$$

<u>SECTION – B</u>

13. Given $A = \{p, q, r, s\}, B = \{1, 2, 3, 4\}$ Every element in set A is not in set B Every element in set B is not in set A

 \therefore A & B are not equal sets.

14. Given equation is in the form of $ax^2 + bx + c = 0$ $\therefore a = 1, b = -8, c = 16$ $b^2 - 4ac = (8)^2 - 4(16) = 64 - 64 = 0$ \therefore Given equation has equal roots.

15. If two lines are parallel lines then the condition is $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ Ex : Given lines are 4x + 8y - 30 = 0

$$2x + 4y - 62 = 0$$

$$\therefore \frac{4}{2} = \frac{8}{4} \neq \frac{-30}{62}$$

16. Given surface area of hemisphere is 's' We know that surface area of hemisphere is $3\pi r^2$ $\therefore s = 3\pi r^2$

$$3\pi r^{2} = s$$
$$r^{2} = \frac{s}{3\pi}$$
$$r = \sqrt{\frac{s}{3\pi}}$$

17. Given n^{th} term of an A.P is 6n+2

$$t_n = 6n + 2$$

= 2 + 6n - 6 + 6
= 8 + (n - 1)6

This is in the form of a + (n-1)d

 \therefore common difference d = 6

18.
$$\log_{\frac{3}{2}}^{\frac{27}{8}} = \log_{\left(\frac{3}{2}\right)^{3}} \left[\frac{27}{8} = \frac{3 \times 3 \times 3}{2 \times 2 \times 2} = \frac{3^{3}}{2^{3}} = \left(\frac{3}{2}\right)^{3}\right]$$
$$= 3\log_{\frac{3}{2}}^{\frac{3}{2}} \left[\log_{a}^{x^{m}} = m\log a^{x}\right]$$
$$= 3(1) = 3$$

19. Given
$$t_n = (-1)^n 2019$$

(We know that nth term of G.P $t_n = ar^{n-1}$]

$$t_{n} = (-1)^{n} 2019$$
$$= 2019 (-1)^{n} \times \frac{(-1)}{(-1)}$$
$$= -2019 (-1)^{n-1}$$

 \therefore common ratio, r=-1

20. Given surface area of a sphere is 616 cm^2

We know that curved surface area of sphere is $4\pi r^2$

$$4\pi r^{2} = 616$$
$$4 \times \frac{22}{7} \times r^{2} = 616$$
$$r^{2} = 7^{2}$$

r = 7 cm

 \therefore diameter of sphere is 2(r) = 2(7) = 14 cm

SECTION – C

Let us assume $2 + \sqrt{3}$ is irrational. 21.

That is, we can find coprimes p and q ($q\neq 0$)

Such that
$$2 + \sqrt{3} = \frac{p}{q}$$

 $\sqrt{3} = \frac{p}{q} - 2$
 $\sqrt{3} = \frac{p - 2q}{q}$ (1)

Since p and q are integers, the R.H.S of the equation (1)

 $\frac{p-2q}{q}$ is rational so the LHS $\sqrt{3}$ also rational But this contradicts the fact that $\sqrt{3}$ is

irrational

This contradiction has arisen because of our in correct assumption that $2 + \sqrt{3}$ is rational. So, We calculate that $2 + \sqrt{3}$ is irrational.

22. Given
$$\alpha = 2, \beta = -1$$

23.

The quadratic polynomial is $k(x^2 - (\alpha + \beta)x + \alpha\beta)$

$$= k \left(x^{2} - (2 - 1) x + (2)(-1) \right)$$
$$= k \left(x^{2} - x - 2 \right)$$

When k=1, The quadratic polynomial is $x^2 - x - 2$. Given radius of hemisphere, r = 3 cm

Volume of hemisphere is $\frac{2}{3}\pi r^3$ $=\frac{2}{\cancel{3}}\times\frac{22}{\cancel{7}}\times3\times3\times\cancel{3}$ $=\frac{396}{7}=56.57\,cm^3$ Given 3rd term is 5 24. $t_3 = 5 \Longrightarrow a + 2d = 5 \tag{1}$ 7th term is 9 $t_7 = 9 \Longrightarrow a + 6d = 9 \tag{2}$ $(2) - (1) \Longrightarrow \mathscr{A} + 6d - \mathscr{A} - 2d = 9 - 5$ 4d = 4d = 1 Sub d = 1 in equation (1) a+2(1)=5a = 5 - 2a = 3 \therefore A.P series is a, a+d, a+2d, a+3d, ----required A.P series is 3,3+1,3+2(1),3+3(1),-----⇒3,4,5,6,-----Given 3x - 5y = -1_____(1)

25.

$$x - y = -1$$
Equation (2) $\Rightarrow -y = -1 - x$

$$y = x + 1$$
Substituting $y = x + 1$ in equation (1)
$$3x - 5(x + 1) = -1$$

$$3x - 5x - 5 = -1$$

$$-2x = -1 + 5$$

$$-2x = 4 \Rightarrow x = \frac{4}{-2}$$
 \therefore sub $x - 2$ in $y = x + 1$

$$y = -2 + 1$$

$$= -1$$
 $\therefore x = -2, y = -1$
26. Given a sphere, a cylinder and a cone having same radius
Let radius be 'r'
$$S_1 =$$
curved surface area of sphere $= 4\pi r^2$

$$S_2 =$$
curved surface area of cylinder $= 2\pi rh$

$$S_3 =$$
curved surface area of cone $= \pi rl$
Ratio of Sphere, Cylinder and a Cone is $S_1 : S_2 : S_3 = 4\pi r^2 : 2\pi rh : \pi rl$

$$= 4r : 2h : l$$
27. We know that sum of two supplementary angle is 180^0
Let amplies angle be x^0

Let smaller angle be x^0 Given larger angle exceeds the smaller by 180^0 \therefore larger angle is $x^0 + 18^0$ $x^0 + x^0 + 18^0 = 180^0$ $2x^0 = 180^0 - 18^0$ $2x^0 = 162$ $x^0 = \frac{162^0}{2}$ \therefore Two angles are $81^0, 81^0 + 18^0$ $\Rightarrow 81^0, 99^0$ 28. Given $A = \{1, 2, 3\}, B = \{3, 4, 5\}$ $A \cap B = \{1, 2, 3\} \cap \{3, 4, 5\}$

SECTION – D

29.A) Let r be the common radius of a sphere, a cone and a cylinder Height of a sphere = its diameter = 2r Then, the height of the cone = height of cylinder = height of sphere = 2r Let l be the slant height of cone = $\sqrt{r^2 + h^2}$ = $\sqrt{r^2 + (2r)^2}$ = $\sqrt{r^2 + 4r^2}$

 $= \{3\}$

 $=\sqrt{5}r$ S_1 = curved surface area of sphere = $4\pi r^2$ S_2 = curved surface area of cylinder = $2\pi rh = 2\pi r \times 2r$ $=4\pi r^2$ S_3 = curved surface area of cone = $\pi rl = \pi r \times \sqrt{5}r$ $=\sqrt{5}\pi r^2$ Ratio of curved surface area as $\therefore S_1: S_2: S_3 = 4\pi r^2: 4\pi r^2: \sqrt{5}\pi r^2$ $=4:4:\sqrt{5}$ 29. B) Given sum of first 14 terms of an AP is 1050 $\therefore S_{14} = 1050 \qquad \left[\because S_n = \frac{n}{2} \left(2a + (n-1)d \right) \right]$ $\frac{14}{2} \left[2a + (14-1)d \right] = 1050$ 2a + 13d = 150_____(1) Also given first term is 10 ∴ a = 10 Sub a = 10 in equation (1) 2(10) + 13d = 15020 + 13d = 15013d = 150 - 2013d = 130d = 10 20^{th} term, $T_{20} = a + 19d$ =10=19(10)=10+190=200

30.A) Let the speed of current = 3 kmph Speed of the current = 3 kmph Then speed of the boat in up stream = (x-3)kmph Speed of the boat in down stream = (x+3)kmph

By given conditions of problem,

$$\therefore \frac{24}{x-3} + \frac{24}{x+3} = 6$$

$$24\left[\frac{1}{x-3} + \frac{1}{x+3}\right] = 6$$

$$4\left(\frac{x+3+x-3}{(x-3)(x+3)}\right) = 1$$

$$4(2x) = (x-3)(x+3)$$

$$8x = x^2 - 9$$

$$x^2 - 9x + x - 9 = 0$$

$$x^2 - 9x + x - 9 = 0$$

$$x(x-9) + 1(x-9) = 0$$

$$(x-9)(x+1) = 0$$

$$\therefore x = -1, +9$$

$$\therefore x \text{ can't be negative}$$

$$\therefore x = 9$$

i.e., speed of the boat instill water = 9 kmph.

30.B) Side of lead cube = 44 cmRadius of spherical ball = $\frac{4}{2}$ cm = 2 cm Now volume of a spherical ball = $\frac{4}{3}\pi r^3$ $=\frac{4}{2} \times \frac{22}{7} \times 2^{3}$ $=\frac{4}{3}\times\frac{22}{7}\times8\,cm^3$ Volume of 'n' spherical balls = $\frac{4}{3} \times \frac{22}{7} \times 8 \times ncm^3$ It is clear that volume of 'n' spherical balls = Volume of lead cube $\Rightarrow \frac{4}{3} \times \frac{22}{7} \times 8 \times x = (44)^3$ $\frac{4}{3} \times \frac{22}{7} \times 8 \times x = 44 \times 44 \times 44$ $x = \frac{44 \times 44 \times 44 \times 3 \times 7}{4 \times 22 \times 8}$ $=11 \times 11 \times 3 \times 7$ =2541Hence, total number of spherical balls = 254131.A) i) $\frac{35}{50} = \frac{7 \times 5}{2 \times 5 \times 5} = \frac{7}{10} = 0.7$ ii) $\frac{21}{25} = \frac{21}{5^2}$ $=\frac{21}{5^2}\times\frac{2^2}{2^2}$ $=\frac{21\times4}{10^2}=\frac{84}{100}=0.84$ iii) $\frac{7}{8} = \frac{7}{2^3}$ $=\frac{7}{2^3} \times \frac{5^3}{5^3} = \frac{7 \times 125}{10^3} = \frac{875}{1000} = 0.875$ 31. B) Given zero's $\alpha = 2, \beta = -\frac{1}{3}$ The required quadratic polynomial is $k(x^2-(\alpha+\beta)x+\alpha\beta)$ $=k\left(x^{2}-\left(2-\frac{1}{3}\right)x+\left(2\right)\left(\frac{-1}{3}\right)\right)$ $=k\left(x^{2}-\left(\frac{6-1}{3}\right)x-\frac{2}{3}\right)$ $=k\left(x^{2}-\frac{5}{3}x-\frac{2}{3}\right)$ $=\frac{k}{2}(3x^2-5x-2)$

We can put different values of K

When K=3, the quadratic polynomial will be $3x^2 - 5x - 2$ 32.A) Disjoint sets : If A and B are disjoint sets then $A \cap B = \phi$ i) False, because $\{2, 3, 4, 5\} n \{3, 6\} = \{3\}$ ii) False, because, $\{a, e, i, o, u\} n \{a, b, c, d\} = \{a\}$ iii) True, because $\{2, 6, 10, 14\} n \{3, 7, 11, 15\} = \{\} = \phi$ iv) True, because $\{2, 6, 10\} n\{3, 7, 11\} = \{\} = \phi$ 32.B) Let the length of the rectangle, l = xGiven perimeter = 2(l+b) = 28 $\Rightarrow l+b=\frac{28}{2}=14 \Rightarrow x+b=14 \Rightarrow b=14-x$ \therefore Breadth of a rectangle b = 14 - xArea of rectangle = length \times breadth =x(14-x) $=14x - x^{2}$ According to the problem $14x - x^2 = 40$ $x^2 - 14x + 40 = 0$ $x^2 - 10x - 4x + 40 = 0$ x(x-10)-4(x-10)=0(x-4)(x-10) = 0 $\therefore x = 10, 4$ \therefore length = 10m or 4 m breadth = 14 - 10 (or) 14 - 4= 4 m (or) 10 m 33.A) Given $P(x) = x^2 - 3x - 4 \Rightarrow y = x^2 - 3x - 4$

Λ	-2	-1	0	1	2	3	4	5
\mathbf{x}^2	4	1	0	1	4	9	16	25
-3x	6	3	0	-3	-6	-9	-12	-15
-4	-4	-4	-4	-4	-4	-4	-4	-4
У	6	0	-4	-6	-6	-4	0	6

Order pairs are (-2,6);(-1,0);(0,-4);(1,-6);(2,-6);(3,-4);(4,0);(5,6)

Verification
$$x^2 - 3x - 4$$

 $= x^2 - 4x + x - 4$
 $= x(x-4) + 1(x-4)$
 $= (x+1)(x-4)$
For zeros $x+1=0; x-4=0$
 $x=-1$ $x=4$
33.B) Given $3x + 4y = 2$ (1)
 $6x + 8y = 4$ (2)
Here $a_1 = 3, b_1 = 4, c_1 = 2$
 $a_2 = 6, b_2 = 8, c_2 = 4$
 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{3}{6} = \frac{4}{8} = \frac{2}{4}$

$$1) \Rightarrow 3x + 4y = 2$$

$$4y = 2 - 3x$$

$$y = \frac{2 - 3x}{4}$$

X	2	6
$y = \frac{2 - 3x}{4}$	-1	-4
		4

Order pair (2, -1); (6, -4)

$$2) \implies 6x + 8y = 4$$
$$8y = 4 - 6x$$
$$y = \frac{4 - 6x}{8}$$

x	2	6
$y = \frac{4 - 6x}{8}$	-1	-4

Order pair (2, -1); (6, -4)

Since $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ therefore, they are coincident lines so, the pair of linear equations is consistent and have infinitely many solutions.