Dr.K.K.R GOWTHAM (E.M) HIGH SCHOOL :: GUDIVADA
Class: X - State
Sub : Mathematics
Marks: 50
Time: $\mathbf{2 ~}_{1 / 2}^{\mathbf{h}} \mathbf{h r s}$
Paper - II Key

SECTION - A

1. \quad Here given $\angle \mathrm{APB}=85^{\circ}$

$$
\begin{aligned}
\angle \mathrm{APB}+\angle \mathrm{AOB} & =180^{\circ} \\
\angle \mathrm{AOB} & =180^{\circ}-85^{\circ} \\
& =95^{\circ}
\end{aligned}
$$

2. One Tangent
3. From the given data,

Angle elevation of boy to the top end of a pillar is
Tan $\mathrm{C}=\frac{A B}{B C}$
$\mathrm{AB}=$ height of pillar $=20 \mathrm{~m}$
$B C=$ distance between pillar and boy $=20 \mathrm{~m}$
Tan $C=\frac{A B}{B C} \Rightarrow \tan C=\frac{20}{20} \Rightarrow \tan C=1$

$$
\begin{aligned}
& =\tan 45^{\circ} \\
& \angle \mathrm{C}=45^{\circ}
\end{aligned}
$$

\therefore angle of elevation from boy to top end of a pillar i 45°
4.

x_{i}	f_{i}	$f_{i} x_{i}$

5. Median from graph is 30

6. (B) $\mathrm{P}(\mathrm{E})+\mathrm{P}(\bar{E})=1$ is correct
7. both are correct
8. $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
& \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}-\angle \mathrm{B} \\
& \angle \mathrm{~A}+\angle \mathrm{C}=180^{\circ}-90^{\circ} \\
& \angle \mathrm{A}=90^{\circ}-\angle \mathrm{C} \\
& \sin \mathrm{~A}=\sin \left(90^{\circ}-\mathrm{C}\right) \\
& =\cos \mathrm{C}
\end{aligned}
$$

9. (ii) figure shows the given condition

10. By given data ,

$$
\begin{aligned}
& \Delta \mathrm{ABC} \sim \triangle \mathrm{ADE} \\
& \therefore \frac{A B}{A D}=\frac{B C}{D E}=\frac{A C}{A E} \\
& \frac{A B}{A D}=\frac{B C}{D E} \\
& \frac{3 \not 6}{\not 2}=\frac{B C}{3} \Rightarrow B C=9 \mathrm{~cm}
\end{aligned}
$$

11. Slop of line $\mathrm{PQ}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
12. The distance between two pints $(0,0)$ and (a, b) is $\sqrt{a^{2}+b^{2}}$

$\underline{S E C T I O N-B(8 \times 1=8 \mathrm{M})}$

13. Given $\mathrm{P}(2,5), \mathrm{Q}(x, 3)$

$$
\begin{aligned}
\text { Slope of } \mathrm{PQ} & =\frac{3-5}{x-2} \\
& =\frac{-2}{x-2}
\end{aligned}
$$

Given slope of $\mathrm{PQ}=2$

$$
\begin{aligned}
& \therefore \frac{-2}{x-2}=2 \\
& -1=x-2 \\
& x=2+(-1) \\
& \quad x=1
\end{aligned}
$$

14. Given probability of Navya winning $=0.82$

Probability of Rekha winning $=1$ - probability of Naavya winning

$$
\begin{aligned}
& =1-0.82 \\
& =0.18
\end{aligned}
$$

15. $\operatorname{coec}^{2} \theta-\cot ^{2} \theta=1$

$$
\begin{aligned}
\operatorname{coec}^{2} \theta & =1+\cot ^{2} \theta \\
& =1+\frac{1}{\tan ^{2} \theta} \\
& =\frac{1+\tan ^{2} \theta}{\tan ^{2} \theta}
\end{aligned}
$$

16. Given $\triangle \mathrm{ABC} \sim \Delta \mathrm{ADE}$

$$
\begin{aligned}
& \therefore \frac{A B}{A D}=\frac{B C}{D E}=\frac{A C}{A E} \\
& \frac{B C}{D E}=\frac{A C}{A E} \Rightarrow \frac{x}{5}=\frac{A E+E C}{A E}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{5}=\frac{6+3}{3} \\
& x=\frac{\not \phi^{3}}{\not \partial} \times 5 \\
& x=15 \mathrm{~cm}
\end{aligned}
$$

17. fi=frequency of given class interval

$$
\mathrm{di}=x_{\mathrm{i}}-\mathrm{a}
$$

18. Given height of tower be ' h '

Distance between tower and observer is ' d '
Angle between observer and top of tower is θ

$$
\therefore \tan \theta=\frac{h}{d}
$$

19. In $\triangle \mathrm{ABC}, \tan \mathrm{A}=\frac{4}{3}=\frac{B C}{A B}$

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
&=4^{2}+3^{2} \\
&=16+9=25 \\
& \mathrm{AC}=5 \\
& \sin \mathrm{~A}=\frac{B C}{A C} \\
&=\frac{4}{5}
\end{aligned}
$$

20. $\triangle \mathrm{AOB}, \angle \mathrm{A}=90^{\circ}$

$$
\begin{aligned}
\mathrm{OB}^{2} & =\mathrm{AB}^{2}+\mathrm{OA}^{2} \\
\mathrm{AB}^{2} & =\mathrm{OB}^{2}-\mathrm{OA}^{2}=(9.1)^{2}-(8.4)^{2} \\
& =82.81-70.56 \\
& =12.25
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{12.25} \\
& =3.5 \mathrm{~cm}
\end{aligned}
$$

SECTION - C

21. Given points $\mathrm{A}(2,-5)$ and $\mathrm{B}(-2,9)$

Let $\mathrm{P}(x, 0)$ be the point on x - axis which is equidistant from
A and B., i.e., PA $=\operatorname{PB}$ [Distance two points $\left(x_{1}, \mathrm{y}_{1}\right) \&\left(x_{2}, \mathrm{y}_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$]

$$
\begin{gathered}
\sqrt{(2-x)^{2}+(-5-0)^{2}}=\sqrt{(-2-x)^{2}+(9-0)^{2}} \\
x^{2}-4 x+4+25=x^{2}+4 x+4+81 \\
-4 x+29=4 x+85 \\
4 x+4 x=29-85 \\
8 x=-56 \\
x=\frac{-56}{8} \\
x=-7
\end{gathered}
$$

22. The circle touches the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA of quadrilateral ABCD at the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ respectively
\therefore the two tangents to a circle. Drawn from a point out side it are equal
AP = AS
$B P=B Q$
DR $=$ DS
$C R=C Q$
By adding, we get
$\mathrm{AP}+\mathrm{BP}+\mathrm{DR}+\mathrm{CR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{DS}+\mathrm{CQ}$

$(\mathrm{AP}+\mathrm{PB})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{BQ}+\mathrm{QC})+(\mathrm{DS}+\mathrm{SA})$
$\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}$
Hence proved
23. Total number of cards $=52$
i) No. of favourable outcomes $=$ No . of an ace cards

$$
=4
$$

$$
P(E)=\frac{\text { No. of favourableoutcomes }}{\text { Total No. outcomes }}=\frac{4}{52}=\frac{1}{13}
$$

ii) No. of favourable out comes $=$ No. of Red kings

$$
=2
$$

$P(E)=\frac{\text { No. of favourableout comes }}{\text { Total No. out comes }}=\frac{2}{52}=\frac{1}{26}$
24. Median of grouped data

$$
\text { Median }=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h
$$

Where $l=$ lower boundary of median class

$$
\begin{aligned}
& n=\text { number of observations } \\
& c f=\text { cumulative frequency of preceding median class } \\
& h=\text { size of the median class. }
\end{aligned}
$$

25. Given $\tan A=\frac{1}{\sqrt{3}}$

$$
\tan B=\sqrt{3}
$$

$$
=\tan 30^{\circ}
$$

$$
=\tan 60^{\circ}
$$

$$
\mathrm{A}=30^{\circ}
$$

$$
B=60^{\circ}
$$

$\sin A \cos B+\cos A \sin B=\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \\
& =\frac{1}{4}+\frac{3}{4}=\frac{1+3}{4}=\frac{4}{4}=1
\end{aligned}
$$

26. From the figure, In triangle $A B C$

$$
\begin{aligned}
& \mathrm{AB}=6 \text { meters } \\
& \angle \mathrm{CAB}=60^{\circ}
\end{aligned}
$$

Let the height of the pole $=\mathrm{BC}=\mathrm{h}$ meters
(We know the adjacent sides and we need to find the opposite side of $\angle \mathrm{AOB}$ in the triangle $\triangle \mathrm{OAB}$ Hence we need to consider the triangonometric ration " $\tan \theta$ " to solve the problem)

$$
\begin{aligned}
\operatorname{Tan} 60^{\circ} & =\frac{B C}{A B} \\
\sqrt{3} & =\frac{h}{6} \\
h & =6 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

27.

$\frac{\sec 15^{0}}{\operatorname{cosec} 75^{0}}+\frac{\sin 72^{0}}{\cos 18^{0}}-\frac{\tan 33^{0}}{\cot 57^{0}}=\frac{\sec 15^{0}}{\operatorname{cosec}\left(90^{\circ}-15\right)}+\frac{\sin 72^{\circ}}{\cos \left(90^{\circ}-72^{\circ}\right)}-\frac{\tan 33}{\cot \left(90^{\circ}-33^{0}\right)}=\frac{\sec 15^{0}}{\sec 15^{0}}+\frac{\sin 72^{0}}{\sin 72^{0}}-\frac{\tan 33^{0}}{\tan 33^{0}}=1+1-1=1$
28. $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$

So $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2}$
But $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=1(\because$ areas are equal $)$
$\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2}=1$
So $\mathrm{AB}^{2}=\mathrm{PQ}^{2}, \mathrm{BC}^{2}=\mathrm{QR}^{2}, \mathrm{AC}^{2}=\mathrm{PR}^{2}$
From which we get $\mathrm{AB}=\mathrm{PQ}$

$$
\begin{aligned}
& \mathrm{BC}=\mathrm{QR} \\
& \mathrm{AC}=\mathrm{PR}
\end{aligned}
$$

$\therefore \Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}$ (by sss congruency)
Hence proved

SECTION - D

29. a) Given : In $\triangle \mathrm{ABC}, \mathrm{D}$ is mid point of $\mathrm{AB} A$ line ' l ' through D , parallel to BC meeting $A C$ at E.
R.T.P: $\quad \mathrm{E}$ is the midpoint of AC

Proof: Case (i) If ' E ' is the midpoint then the given statement becomes true and the proof is obvious
Case (ii) If ' E ' is not the midpoint of AC
Let E^{\prime} be the midpoint of AC then,$\frac{A D}{D B}=\frac{A E}{E C}$
(A line drawn parallel to one side of a triangle divides the other two sides in the same ratio $D \mathrm{DE} \| \mathrm{BC}$)
and given that
$1=\frac{A E}{E C}(\mathrm{D}$ is mid point of $\mathrm{AB}, \mathrm{AD}=\mathrm{DB})$
$\Rightarrow \mathrm{AE}=\mathrm{EC}$
$\Rightarrow \mathrm{E}$ is midpoint of AC

i.e., E must coincide with E^{\prime}
in any case ' l ' bisects AC and hence the proof
(Or)
b) Given $\mathrm{A}(-5,-1)$, $\mathrm{B}(3,-5), \mathrm{C}(5,3)$ are vertices of $\triangle \mathrm{ABC}$

Let $\mathrm{D}, \mathrm{E} \& \mathrm{~F}$ be the midpoints of the sides $\overline{A B}, \overline{B C} \& \overline{A C}$
(Midpoint of $\left(x_{1}, \mathrm{y}_{1}\right) \&\left(x_{2}, \mathrm{y}_{2}\right)=\left[\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right]$)
$\therefore \mathrm{D}$ is midpoint of $\mathrm{AB}, \mathrm{D}=\left[\frac{-5+3}{2}, \frac{-1-5}{2}\right]$

$$
=\left[\frac{-2}{2}, \frac{-6}{2}\right]
$$

$$
=[-1,-3]
$$

E is midpoint of $B C, E=\left[\frac{3+5}{2}, \frac{-5+3}{2}\right]$

$$
=\left[\frac{8}{2}, \frac{-2}{2}\right]=[4,-1]
$$

F is midpoint of $\mathrm{AC}, \mathrm{F}=\left[\frac{-5+5}{2}, \frac{-1+3}{2}\right]$

$$
=\left[\frac{0}{2}, \frac{2}{2}\right]=[0,1]
$$

$$
\text { Area of } \begin{aligned}
\Delta \mathrm{ABC} & =\frac{1}{2}\left|x,\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& =\frac{1}{2}|-5(-5-3)+3(3+1)+5(-1+5)| \\
& =\frac{1}{2}|40+12+20|=\frac{72}{2}=36 \text { squints }
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\Delta \mathrm{DEF} & =\frac{1}{2}|-1(-1,-1)+4(1+3)+0(-3+1)| \\
& =\frac{1}{2}|-1(-2)+4(4)+0|=\frac{1}{2}|2+16|=\frac{18}{2}=9 \text { squints }
\end{aligned}
$$

Ratio of areas $=\operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\Delta \mathrm{DEF})=36: 9=4: 1$
30. a) Given

$$
\begin{aligned}
\tan x & =\frac{5}{12} \\
\sec ^{2} x & =1+\tan ^{2} x \\
& =1+\left(\frac{5}{12}\right)^{2} \\
& =1+\frac{25}{144} \\
& =\frac{144+25}{144}
\end{aligned}
$$

$$
\begin{aligned}
& \sec ^{2} x=\frac{169}{144} \Rightarrow \sec ^{2} x=\frac{13^{2}}{12^{2}} \\
& \Rightarrow \sec x=\frac{13}{12} \\
& \sqrt{\frac{\sec x+1}{\sec x-1}}=\sqrt{\frac{\frac{13}{\frac{12}{12}}+1}{12}-1} \\
& =\sqrt{\frac{\sec x+1}{\sec x-1}}=\sqrt{\frac{\frac{13+1}{\frac{12}{12-1}}}{\not 22}}=\sqrt{\frac{25}{1}}=\sqrt{5^{2}}=5 \\
& \therefore \sec x=\frac{13}{12}, \sqrt{\frac{\sec x+1}{\sec x-1}}=5
\end{aligned}
$$

(Or)

b) Given height of tower $\mathrm{CD}=100 \sqrt{3}$
also given two cars $A \& B$ on either side of road with angle of elevation $30^{\circ} \& 60^{\circ}$ traveling with uniform speed $10 \mathrm{~m} / \mathrm{s} \& 5 \mathrm{~m} / \mathrm{s}$. Let distance between A \& B be ' d ' m

In $\triangle \mathrm{ACD}$
$\tan A=\frac{C D}{A D}$
$\tan 30^{\circ}=\frac{100 \sqrt{3}}{d-x} \Rightarrow \frac{1}{\sqrt{3}}=\frac{100 \sqrt{3}}{d-x} \Rightarrow d-x 300 \mathrm{~m}$
In $\triangle \triangle B C D$
$\tan B=\frac{C D}{B D}$
$\tan 60^{\circ}=\frac{100 \sqrt{3}}{x} \Rightarrow \sqrt{3}=\frac{100 \sqrt{3}}{x} \Rightarrow x=100 \mathrm{~m}$
Time taken for A car $=\frac{\text { dis } \operatorname{tance}}{\text { speed }}=\frac{300}{10}=30 \mathrm{sec}$

Time taken for B car $==\frac{\text { dis } \operatorname{tance}}{\text { speed }}=\frac{100}{5}=20 \mathrm{sec}$
\therefore ' A^{\prime} car late by 10 sec .
31. a) Given No. of yellow balls is ' 6 '

Let No. of green balls be ' x '
\therefore total no. of balls $=6+x$
So, probability of drawing a green ball $=\frac{x}{6+x}$
Probability of drawing a yellow ball $=\frac{6}{6+x}$
Given, probability of drawing a green ball is thrice the yellow ball

$$
\begin{aligned}
& \Rightarrow \frac{x}{6+x}=\frac{3 \times 6}{6+x} \\
& \Rightarrow x=18
\end{aligned}
$$

\therefore No. of green balls $=18$
Total No. of balls $=6+18=24$
Probability of yellow ball $=\frac{6}{24}=\frac{1}{4}$
Probability of green ball $=\frac{18}{24}=\frac{3}{4}$
(Or)
b) Given $A(6,0)$ and $B(0,-4)$

Let P, Q and R be the points which divides devides $\overline{A B}$ into four equal parts

P divides $A B$ in ratio $1: 3$
Q divides $A B$ in ratio $2: 2 \Rightarrow 1: 1$
R divides $A B$ in ratio $3: 1$
[The coordinates of $\mathrm{P}(x, y)$ divides the linesegment joining the points $\mathrm{A}\left(x_{1}, \mathrm{y}_{1}\right) \mathrm{B}\left(x_{2}, \mathrm{y}_{2}\right)$ in the ratio $\mathrm{m}: \mathrm{n}$ is $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$]
$P=\left[\frac{1(0)+3(6)}{1+3}, \frac{1(-4)+3(0)}{1+3}\right]=\left[\frac{18}{4}, \frac{-4}{4}\right]$

$$
=\left[\frac{9}{2},-1\right]
$$

$\mathrm{Q}=\left[\frac{6+0}{2}, \frac{0-4}{2}\right]=\left[\frac{6}{2}, \frac{-4}{2}\right]=[3,-2]$
$R=\left[\frac{3(0)+1(6)}{1+3}, \frac{3(-4)+1(0)}{1+3}\right]=\left[\frac{6}{4}, \frac{-12}{4}\right]$

$$
=\left[\frac{3}{2},-3\right]
$$

32. a) Since the curve is a less than type the data changes to

Marks Scored	Class interval	f	2.C.F	Points
$0-10$	Less than 10	01	01	$(10,01)$
$10-20$	Less than 20	06	07	$(20,07)$
$20-30$	Less than 30	11	18	$(30,18)$
$30-40$	Less than 40	20	38	$(40,38)$
$40-50$	Less than 50	16	54	$(50,54)$
$50-60$	Less than 60	10	64	$(60,64)$
$60-70$	Less than 70	08	72	$(70,72)$

$70-80$	Less than 80	05	77	$(80,77)$

$x=$ axis upper limit $1 \mathrm{~cm}=10$ units $\mathrm{y}=$ axis L.C.F $1 \mathrm{~cm}=10$ units

(Or)
b) Given radius of circle 6 cm and a point 10 cm away from centre

Steps

1) Draw a circle with centre ' O ' and radius 6 cm
2) Take a point P out side the circle such that $O P=10 \mathrm{~cm}$. Join $O P$
3) Draw the perpendicular bisector to OP which bisects it at M.
4) Taking M as centre and PM or MO as radius draw a circle, Let the circle intersects the given circle at A and B
5) Join P to A and B
6) PA and PB are the required tangents of length 8 cm each

Verification:

In \triangle OAP

$$
\mathrm{OA}^{2}+\mathrm{AP}^{2}=6^{2}+8^{2}
$$

$$
=36+64=100
$$

$\mathrm{OP}^{2}=10^{2}=100$
$\therefore \mathrm{OA}^{2}+\mathrm{AP}^{2}=\mathrm{OP}^{2}$
Hence AP is a tangent similarly BP is a tangent
33. a) Given height of tower $C D=' b \prime m$ given distance between a point foot of tower $\mathrm{BC}=$ ' a ' m
Let the length of flag staff be $A D=$ ' h ' m
now $\operatorname{In} \triangle \mathrm{BCD}$
$\tan B=\frac{C D}{B C}$
$\tan \theta=\frac{b}{a} \Rightarrow \tan ^{2} \theta=\frac{b^{2}}{a^{2}}$
now in $\triangle \mathrm{ABC}$

$\tan B=\frac{A C}{B C}$
$\tan (2 \theta)=\frac{A D+D C}{B C}$
$\tan 2 \theta=\frac{b+h}{a}$
$\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{b+h}{a}$
$\frac{2 \times \frac{b}{a}}{1-\frac{b^{2}}{a^{2}}}=\frac{b+h}{a}$
$\frac{\frac{2 b}{a}}{\frac{a^{2}-b^{2}}{a^{2}}}=\frac{b+h}{a}$
$\frac{2 a b}{a^{2}-b^{2}}=\frac{b+h}{a}$
$\frac{2 a^{2} b}{a^{2}-b^{2}}=b+h$
$h=\frac{2 a^{2} b}{a^{2}-b^{2}}-b$

$$
\begin{aligned}
& h=\frac{2 a^{2} b-a^{2} b+b^{3}}{a^{2}-b^{2}} \\
& h=\frac{a^{2} b+b^{3}}{a^{2}-b^{2}} \\
& h=\frac{b\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}
\end{aligned}
$$

\therefore length of flag staff is $\frac{b\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}$

> (Or)
b)

Class interval	Frequency	C.f
$0-10$	5	5
$10-20$	x	$5+x$
$20-30$	20	$25+x$
$30-40$	15	$40+x$
$40-50$	y	$40+x+y$
$50-60$	5	$45+x+y$

Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
It is given that $\sum f=n=60$
So, $45+x+y=60 \Rightarrow x+y=60-45$

$$
\begin{equation*}
x+y=15 \tag{1}
\end{equation*}
$$

The median is 28.5 which lies between 20 and 30 .
\therefore median class $=20-30$
Lower boundary of the median class ' l ' $=20$
No. of observations, $\mathrm{n}=60 \frac{n}{20}=\frac{60}{2}=30$
$\mathrm{Cf}=$ cumulative frequency $=5+x$
$h=$ size of class interval $=10$

$$
\begin{aligned}
& \text { Median }=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& 28.5=20+\left(\frac{30-5-x}{20}\right) \times 10 \\
& 28.5-20=\frac{25-x}{2} \\
& \begin{array}{r}
8.5=\frac{25-x}{2} \\
\begin{array}{r}
17=25-x \\
x=25-17 \\
\begin{array}{r}
x=8 \\
\text { from } \Rightarrow x+y=15
\end{array} \\
8+y=15
\end{array} \\
\quad y=15-8 \\
=7
\end{array} \\
& \begin{array}{r}
\therefore x=8, y=7
\end{array}
\end{aligned}
$$

