POLYNOMIALS

SECTION -3 (8X2=16m)

Answer the following 8X2=16m

21. Check whether -2 and 3 are the zeroes of the polynomial \(p(x) = x^2 - x - 6 \)?

22. Why are \(\frac{1}{4} \) and -1 zeroes of the polynomial \(p(x) = 4x^2 + 3x - 1 \)?

23. Let \(p(x) = x^2 - 4x + 3 \). Find the value of \(p(0), p(1), p(2), p(3) \) and obtain zeroes of the polynomial \(p(x) \).

24. Find the zeroes of the polynomial \(p(x) = x^2 + 7x + 10 \) and verify the relationship between the zeroes and coefficients?

25. Find the zeroes of the polynomial \(p(x) = x^2 - 2x - 8 \) and verify the relationship between the zeroes and coefficients?

26. Find a quadratic polynomial if the zeroes of it are 2 and -1/3 respectively?

27. Divide \(3x^3 + x^2 + 2x + 5 \) by \(1 + 2x + x^2 \)?

28. Find a quadratic polynomial, the sum and product of whose zeroes are 1/4 and -1 respectively?

SECTION -4 (5X4=20m)

Answer the following 5X4=20m

29. Verify that 1, -1, -3 are the zeroes of the polynomial \(x^3 + 3x^2 - x - 3 \) and then verify the relationship between the zeroes and coefficients?

OR

Verify that 3, -1, -1/3 are the zeroes of the polynomial \(3x^3 - 5x^2 - 11x - 3 \) and then verify the relationship between the zeroes and coefficients?

30. Find all zeroes of \(2x^4 - 3x^3 - 3x^2 + 6x - 2 \), if you know that two of its zeroes are \(\sqrt{2} \) and \(-\sqrt{2} \)?

OR

Find all zeroes of \(3x^4 + 6x^3 - 2x^2 - 10x - 5 \), if you know that two of its zeroes are \(\sqrt{3} \) and \(-\sqrt{3} \)?
31. Draw the graph of \(y = x^2 - 5x + 6 \), find the zeroes of \(y = x^2 - 5x + 6 \)?

OR

Draw the graph of \(y = x^2 - 2x - 8 \), find the zeroes of \(y = x^2 - 2x - 8 \)?

32. Divide \(3x^2 - x^3 - 3x + 5 \) by \(x - 1 - x^2 \), and verify the division algorithm?

OR

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, −7, −14 respectively.

33. On dividing \(x^3 - 3x^2 + x + 2 \) by a polynomial \(g(x) \), the quotient and remainder were \(x - 2 \) and \(-2x + 4 \), respectively. Find \(g(x) \).

OR

Give examples of polynomials \(p(x) \), \(g(x) \), \(q(x) \) and \(r(x) \), which satisfy the division algorithm and (i) \(\deg p(x) = \deg q(x) \) (ii) \(\deg q(x) = \deg r(x) \) (iii) \(\deg r(x) = 0 \)?